Global stability of non-monotone traveling wave solutions for a nonlocal dispersal equation with time delay

被引:16
作者
Zhang, Guo-Bao [1 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Gansu, Peoples R China
关键词
Non-monotone traveling waves; Global stability; Nonlocal dispersal equation; Anti-weighted energy method; ASYMPTOTIC STABILITY; NONLINEAR STABILITY; FRONTS; SPEEDS; SYSTEM;
D O I
10.1016/j.jmaa.2019.02.058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the global stability of non-monotone traveling wave solutions to a nonlocal dispersion equation with time delay. It is proved that, all noncritical traveling wave solutions are globally stable with the exponential convergence rate t(-1/alpha)e(-mu t) for some constants mu > 0 and alpha is an element of (0,2], and the critical traveling wave solutions are globally stable in the algebraic form t(-1/alpha), where the initial perturbations around the monotone/non-monotone traveling wave solution in a weighted Sobolev space can be arbitrarily large. The adopted approach is the anti-weighted energy method combining with Fourier's transform. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:605 / 627
页数:23
相关论文
共 35 条
[11]   Stability and uniqueness of traveling waves of a nonlocal dispersal SIR epidemic model [J].
Li, Yan ;
Li, Wan-Tong ;
Zhang, Guo-Bao .
DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2017, 14 (02) :87-123
[12]   EXPONENTIAL STABILITY OF NONMONOTONE TRAVELING WAVES FOR NICHOLSON'S BLOWFLIES EQUATION [J].
Lin, Chi-Kun ;
Lin, Chi-Tien ;
Lin, Yanping ;
Mei, Ming .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (02) :1053-1084
[13]   Nonlinear stability of traveling wave fronts for nonlocal delayed reaction-diffusion equations [J].
Lv, Guangying ;
Wang, Mingxin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (02) :1094-1106
[14]   Nonlinear stability of travelling wave fronts for delayed reaction diffusion equations [J].
Lv, Guangying ;
Wang, Mingxin .
NONLINEARITY, 2010, 23 (04) :845-873
[15]   Asymptotic stability of travelling waves for Nicholson's blowflies equation with diffusion [J].
Mei, M ;
So, JWH ;
Li, MY ;
Shen, SSP .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 :579-594
[16]  
Mei M., 2011, Int. J. Numer. Anal. Model. Ser. B, V2, P379
[17]  
Mei M, 2008, P ROY SOC EDINB A, V138, P551
[18]  
Mei M, 2019, INT J NUMER ANAL MOD, V16, P375
[19]   GLOBAL STABILITY OF MONOSTABLE TRAVELING WAVES FOR NONLOCAL TIME-DELAYED REACTION-DIFFUSION EQUATIONS [J].
Mei, Ming ;
Ou, Chunhua ;
Zhao, Xiao-Qiang .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (06) :2762-2790
[20]  
Mei M, 2009, J DIFFER EQUATIONS, V247, P511, DOI 10.1016/j.jde.2008.12.020