Global stability of non-monotone traveling wave solutions for a nonlocal dispersal equation with time delay

被引:13
作者
Zhang, Guo-Bao [1 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Gansu, Peoples R China
关键词
Non-monotone traveling waves; Global stability; Nonlocal dispersal equation; Anti-weighted energy method; ASYMPTOTIC STABILITY; NONLINEAR STABILITY; FRONTS; SPEEDS; SYSTEM;
D O I
10.1016/j.jmaa.2019.02.058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the global stability of non-monotone traveling wave solutions to a nonlocal dispersion equation with time delay. It is proved that, all noncritical traveling wave solutions are globally stable with the exponential convergence rate t(-1/alpha)e(-mu t) for some constants mu > 0 and alpha is an element of (0,2], and the critical traveling wave solutions are globally stable in the algebraic form t(-1/alpha), where the initial perturbations around the monotone/non-monotone traveling wave solution in a weighted Sobolev space can be arbitrarily large. The adopted approach is the anti-weighted energy method combining with Fourier's transform. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:605 / 627
页数:23
相关论文
共 35 条
  • [11] Stability and uniqueness of traveling waves of a nonlocal dispersal SIR epidemic model
    Li, Yan
    Li, Wan-Tong
    Zhang, Guo-Bao
    [J]. DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2017, 14 (02) : 87 - 123
  • [12] EXPONENTIAL STABILITY OF NONMONOTONE TRAVELING WAVES FOR NICHOLSON'S BLOWFLIES EQUATION
    Lin, Chi-Kun
    Lin, Chi-Tien
    Lin, Yanping
    Mei, Ming
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (02) : 1053 - 1084
  • [13] Nonlinear stability of traveling wave fronts for nonlocal delayed reaction-diffusion equations
    Lv, Guangying
    Wang, Mingxin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (02) : 1094 - 1106
  • [14] Nonlinear stability of travelling wave fronts for delayed reaction diffusion equations
    Lv, Guangying
    Wang, Mingxin
    [J]. NONLINEARITY, 2010, 23 (04) : 845 - 873
  • [15] Asymptotic stability of travelling waves for Nicholson's blowflies equation with diffusion
    Mei, M
    So, JWH
    Li, MY
    Shen, SSP
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 : 579 - 594
  • [16] Mei M., 2011, Int. J. Numer. Anal. Model. Ser. B, V2, P379
  • [17] Mei M, 2008, P ROY SOC EDINB A, V138, P551
  • [18] Mei M, 2019, INT J NUMER ANAL MOD, V16, P375
  • [19] GLOBAL STABILITY OF MONOSTABLE TRAVELING WAVES FOR NONLOCAL TIME-DELAYED REACTION-DIFFUSION EQUATIONS
    Mei, Ming
    Ou, Chunhua
    Zhao, Xiao-Qiang
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (06) : 2762 - 2790
  • [20] Traveling wavefronts for time-delayed reaction-diffusion equation: (II) Nonlocal nonlinearity
    Mei, Ming
    Lin, Chi-Kun
    Lin, Chi-Tien
    So, Joseph W. -H.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (02) : 511 - 529