In-Situ Fabrication of TCP/Al2O3 and Fluorapatite/Al2O3 Composites by Normal Sintering of Hydroxyapatite and Al2O3 Powder Mixtures

被引:0
作者
Ha, Jung-Soo [1 ]
Han, Yoo-Jeong [1 ]
机构
[1] Andong Natl Univ, Sch Mat Sci & Engn, Andong 36729, South Korea
来源
KOREAN JOURNAL OF MATERIALS RESEARCH | 2019年 / 29卷 / 02期
关键词
tricalcium phosphate; fluorapatite; Al2O3; composites; in situ; MECHANICAL-PROPERTIES; ZIRCONIA; STABILITY; PHASE; MGF2;
D O I
10.3740/MRSK.2019.29.2.129
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A powder mixture of 70 wt% Al2O3 and 30 wt% hydroxyapatite (HA) is sintered at 1300 degrees C or 1350 degrees C for 2 h at normal pressure. An MgF2-added composition to make HA into fluorapatite (FA) is also prepared for comparison. The samples without MgF2 show alpha & beta-tricalcium phosphates (TCPs) and Al2O3 phases with no HA at either of the sintering temperatures. In the case of 1,350 degrees C, a CaAl4O7 phase is also found. Densification values are 69 and 78 %, and strengths are 156 and 104 MPa for 1,300 and 1,350 degrees C, respectively. Because the decomposition of HA produces a H2O vapor, fewer large pores of 5-6 mu m form at 1,300 degrees C. The MgF2-added samples show FA and Al2O3 phases with no TCP Densification values are 79 and 87 %, and strengths are 104 and 143 MPa for 1,300 and 1,350 degrees C, respectively. No large pores are observed, and the grain size of FA (1-2 mu m) is bigger than that of TCP (0.7 mu m >=) in the samples without MgF2. The resulting TCP/Al2O3 nd FA/Al2O3 composites fabricated in situ exhibit strengths 6-10 times higher than monolithic TCP and HA.
引用
收藏
页码:129 / 135
页数:7
相关论文
共 24 条
[2]  
Adolfsson E, 1999, J AM CERAM SOC, V82, P2909
[3]   Hydroxyapatite nanocomposites: Synthesis, sintering and mechanical properties [J].
Aminzare, M. ;
Eskandari, A. ;
Baroonian, M. H. ;
Berenov, A. ;
Hesabi, Z. Razavi ;
Taheri, M. ;
Sadrnezhaad, S. K. .
CERAMICS INTERNATIONAL, 2013, 39 (03) :2197-2206
[4]  
AYED FB, 2000, J EUR CERAM SOC, V20, P1069
[5]   Sintering and mechanical properties of tricalcium phosphate-fluorapatite composites [J].
Bouslama, Nadhem ;
Ben Ayed, Foued ;
Bouaziz, Jamel .
CERAMICS INTERNATIONAL, 2009, 35 (05) :1909-1917
[6]   Effect of AlF3, CaF2 and MgF2 on hot-pressed hydroxyapatite-nanophase alpha-alumina composites [J].
Evis, Zafer ;
Doremus, Robert H. .
MATERIALS RESEARCH BULLETIN, 2008, 43 (10) :2643-2651
[7]   Hydroxyapatite and zirconia composites:: Effect of MgO and MgF2 on the stability of phases and sinterability [J].
Evis, Zafer ;
Usta, Metin ;
Kutbay, Isil .
MATERIALS CHEMISTRY AND PHYSICS, 2008, 110 (01) :68-75
[8]   Processing, microstructure and toughness of Al2O3 platelet-reinforced hydroxyapatite [J].
Gautier, S ;
Champion, E ;
BernacheAssollant, D .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 1997, 17 (11) :1361-1369
[9]   Fabrication and Characterization of Hydroxyapatite/Mullite and Tricalcium Phosphate/Al2O3 Composites Containing 30 wt% of Bioactive Components [J].
Ha, Jung-Soo .
JOURNAL OF THE KOREAN CERAMIC SOCIETY, 2015, 52 (05) :374-379
[10]   Properties of fluoridated hydroxyapatite-alumina biological composites densified with addition of CaF2 [J].
Kim, HW ;
Koh, YH ;
Seo, SB ;
Kim, HE .
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2003, 23 (04) :515-521