Topic-aware Social Influence Propagation Models

被引:107
作者
Barbieri, Nicola [1 ]
Bonchi, Francesco [1 ]
Manco, Giuseppe [2 ]
机构
[1] Yahoo Res Barcelona, Barcelona, Spain
[2] CNR, ICAR, Arcavacata Di Rende, Italy
来源
12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2012) | 2012年
关键词
D O I
10.1109/ICDM.2012.122
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study social influence from a topic modeling perspective. We introduce novel topic-aware influence-driven propagation models that experimentally result to be more accurate in describing real-world cascades than the standard propagation models studied in the literature. In particular, we first propose simple topic-aware extensions of the well-known Independent Cascade and Linear Threshold models. Next, we propose a different approach explicitly modeling authoritativeness, influence and relevance under a topic-aware perspective. We devise methods to learn the parameters of the models from a dataset of past propagations. Our experimentation confirms the high accuracy of the proposed models and learning schemes.
引用
收藏
页码:81 / 90
页数:10
相关论文
共 23 条
  • [11] MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM
    DEMPSTER, AP
    LAIRD, NM
    RUBIN, DB
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01): : 1 - 38
  • [12] Domingos P., 2001, KDD
  • [13] Goyal A., 2010, WSDM
  • [14] Hofmann T., 1999, UAI
  • [15] Ienco D., 2010, WORKSH ICDM
  • [16] Kimura M., 2006, PKDD
  • [17] Lin X., 2011, ICDM
  • [18] Liu L., 2010, CIKM
  • [19] ANALYSIS OF APPROXIMATIONS FOR MAXIMIZING SUBMODULAR SET FUNCTIONS .1.
    NEMHAUSER, GL
    WOLSEY, LA
    FISHER, ML
    [J]. MATHEMATICAL PROGRAMMING, 1978, 14 (03) : 265 - 294
  • [20] Nigam K., 1999, IJCAI WORKSH MACH LE