Topic-aware Social Influence Propagation Models

被引:110
作者
Barbieri, Nicola [1 ]
Bonchi, Francesco [1 ]
Manco, Giuseppe [2 ]
机构
[1] Yahoo Res Barcelona, Barcelona, Spain
[2] CNR, ICAR, Arcavacata Di Rende, Italy
来源
12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2012) | 2012年
关键词
D O I
10.1109/ICDM.2012.122
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study social influence from a topic modeling perspective. We introduce novel topic-aware influence-driven propagation models that experimentally result to be more accurate in describing real-world cascades than the standard propagation models studied in the literature. In particular, we first propose simple topic-aware extensions of the well-known Independent Cascade and Linear Threshold models. Next, we propose a different approach explicitly modeling authoritativeness, influence and relevance under a topic-aware perspective. We devise methods to learn the parameters of the models from a dataset of past propagations. Our experimentation confirms the high accuracy of the proposed models and learning schemes.
引用
收藏
页码:81 / 90
页数:10
相关论文
共 23 条
[11]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[12]  
Domingos P., 2001, KDD
[13]  
Goyal A., 2010, WSDM
[14]  
Hofmann T., 1999, UAI
[15]  
Ienco D., 2010, WORKSH ICDM
[16]  
Kimura M., 2006, PKDD
[17]  
Lin X., 2011, ICDM
[18]  
Liu L., 2010, CIKM
[19]   ANALYSIS OF APPROXIMATIONS FOR MAXIMIZING SUBMODULAR SET FUNCTIONS .1. [J].
NEMHAUSER, GL ;
WOLSEY, LA ;
FISHER, ML .
MATHEMATICAL PROGRAMMING, 1978, 14 (03) :265-294
[20]  
Nigam K., 1999, IJCAI WORKSH MACH LE