Estimating individual treatment effect on disability progression in multiple sclerosis using deep learning

被引:18
作者
Falet, Jean-Pierre R. [1 ,2 ,3 ]
Durso-Finley, Joshua [2 ,3 ]
Nichyporuk, Brennan [2 ,3 ]
Schroeter, Julien [2 ,3 ]
Bovis, Francesca [4 ]
Sormani, Maria-Pia [4 ,5 ]
Precup, Doina [3 ,6 ]
Arbel, Tal [2 ,3 ]
Arnold, Douglas Lorne [1 ,7 ]
机构
[1] McGill Univ, Montreal Neurol Inst, Dept Neurol & Neurosurg, Montreal, PQ, Canada
[2] McGill Univ, Ctr Intelligent Machines, Dept Elect & Comp Engn, Montreal, PQ, Canada
[3] Mila Quebec AI Inst, Montreal, PQ, Canada
[4] Univ Genoa, Dept Hlth Sci DISSAL, Genoa, Italy
[5] IRCCS Osped Policlin San Martino, Genoa, Italy
[6] McGill Univ, Sch Comp Sci, Montreal, PQ, Canada
[7] NeuroRx Res, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
DOUBLE-BLIND; FOLLOW-UP; PLACEBO; LESIONS; MULTICENTER; OCRELIZUMAB; LAQUINIMOD; ATROPHY; TRIAL;
D O I
10.1038/s41467-022-33269-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Disability progression in multiple sclerosis remains resistant to treatment. The absence of a suitable biomarker to allow for phase 2 clinical trials presents a high barrier for drug development. We propose to enable short proof-of-concept trials by increasing statistical power using a deep-learning predictive enrichment strategy. Specifically, a multi-headed multilayer perceptron is used to estimate the conditional average treatment effect (CATE) using baseline clinical and imaging features, and patients predicted to be most responsive are preferentially randomized into a trial. Leveraging data from six randomized clinical trials (n = 3,830), we first pre-trained the model on the subset of relapsing-remitting MS patients (n = 2,520), then fine-tuned it on a subset of primary progressive MS (PPMS) patients (n = 695). In a separate held-out test set of PPMS patients randomized to anti-CD20 antibodies or placebo (n = 297), the average treatment effect was larger for the 50% (HR, 0.492; 95% CI, 0.266-0.912; p = 0.0218) and 30% (HR, 0.361; 95% CI, 0.165-0.79; p = 0.008) predicted to be most responsive, compared to 0.743 (95% CI, 0.482-1.15; p = 0.179) for the entire group. The same model could also identify responders to laquinimod in another held-out test set of PPMS patients (n = 318). Finally, we show that using this model for predictive enrichment results in important increases in power.
引用
收藏
页数:12
相关论文
共 47 条
[1]  
Alaa A. M., 2017, PROC 34 INT C MACHIN, V70
[2]  
[Anonymous], 2019, ENR STRAT CLIN TRIAL
[3]   Recursive partitioning for heterogeneous causal effects [J].
Athey, Susan ;
Imbens, Guido .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (27) :7353-7360
[4]  
Barrow DK, 2013, IEEE IJCNN
[5]   Defining responders to therapies by a statistical modeling approach applied to randomized clinical trial data [J].
Bovis, Francesca ;
Carmisciano, Luca ;
Signori, Alessio ;
Pardini, Matteo ;
Steinerman, Joshua R. ;
Li, Thomas ;
Tansy, Aaron P. ;
Sormani, Maria Pia .
BMC MEDICINE, 2019, 17 (1)
[6]  
Davidson-Pilon C., 2019, J OPEN SOURCE SOFTW, V4, P1317, DOI DOI 10.21105/JOSS.01317
[7]  
Durso-Finley J., 2022, MEDICAL IMAGING DEEP, V172
[8]   Eight-year follow-up study of brain atrophy in patients with MS [J].
Fisher, E ;
Rudick, RA ;
Simon, JH ;
Cutter, G ;
Baier, M ;
Lee, JC ;
Miller, D ;
Weinstock-Guttman, B ;
Mass, MK ;
Dougherty, DS ;
Simonian, NA .
NEUROLOGY, 2002, 59 (09) :1412-1420
[9]   Disability and T2 MRI lesions:: a 20-year follow-up of patients with relapse onset of multiple sclerosis [J].
Fisniku, L. K. ;
Brex, P. A. ;
Altmann, D. R. ;
Miszkiel, K. A. ;
Benton, C. E. ;
Lanyon, R. ;
Thompson, A. J. ;
Miller, D. H. .
BRAIN, 2008, 131 :808-817
[10]   A randomized, placebo-controlled, phase 2 trial of laquinimod in primary progressive multiple sclerosis [J].
Giovannoni, Gavin ;
Knappertz, Volker ;
Steinerman, Joshua R. ;
Tansy, Aaron P. ;
Li, Thomas ;
Krieger, Stephen ;
Uccelli, Antonio ;
Uitdehaag, Bernard M. J. ;
Montalban, Xavier ;
Hartung, Hans-Peter ;
Pia Sormani, Maria ;
Cree, Bruce A. C. ;
Lublin, Fred ;
Barkhof, Frederik .
NEUROLOGY, 2020, 95 (08) :E1027-E1040