Precise drop dispensation on superhydrophobic surfaces using acoustic nebulization

被引:17
作者
Vuong, Thach [1 ]
Qi, Aisha [2 ,3 ]
Muradoglu, Murat [1 ]
Cheong, Brandon Huey-Ping [1 ]
Liew, Oi Wah [4 ]
Ang, Cui Xia [4 ]
Fu, Jing [5 ]
Yeo, Leslie [2 ]
Friend, James [2 ,3 ]
Ng, Tuck Wah [1 ]
机构
[1] Monash Univ, Lab Opt Acoust & Mech, Clayton, Vic 3800, Australia
[2] RMIT Univ, Micro Nanophys Res Lab, Melbourne, Vic 3000, Australia
[3] Melbourne Ctr Nanofabricat, Clayton, Vic 3800, Australia
[4] Natl Univ Singapore, Natl Univ Hlth Syst, Ctr Translat Med, Cardiovasc Res Inst,Yong Loo Lin Sch Med, Singapore 117599, Singapore
[5] Monash Univ, Dept Mech & Aerosp Engn, Clayton, Vic 3800, Australia
基金
澳大利亚研究理事会;
关键词
RETRIEVAL;
D O I
10.1039/c3sm00016h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The adhesion forces of liquid drops on superhydrophobic surfaces are typically in the nano-Newton range which presents problems in their dispensation from pipettes. Furthermore, since the liquid adheres more strongly to the pipette tip, some portion of the liquid will tend to remain on the tip, causing inaccuracy in the volume dispensed. We advance a novel approach here, in which the spray from an acoustic nebulizer is sent to a superhydrophobic receptacle and the volume ascertained precisely using a weighing scale. The superhydrophobic surface was identified to develop via a galvanic displacement mechanism in an electroless deposition process. A time dependent morphology change from granular to dendritic with longer immersion into the silver nitrate solution was found which indicated that granular growth beyond a certain size was not feasible, although granular structures were more preferentially formed just after nucleation. The dendritic structure formation was likely due to the natural tendency of the process to maintain or increase the surface area to volume ratio in order not to limit the rate of deposition. An immersion for at least 7 seconds into the silver nitrate solution, when the granular structures were predominant, was all that was needed to ensure superhydrophobicity of the surfaces. Also, the superhydrophobic state required not just significant numbers of the granular structures to be present but also interrupted coverage on the surface. On using the technique, a single drop was created by subsequently covering the receptacle with a lid and shaking it gently. The volume dispensed was found to vary linearly with the operation time of the nebulizer. We elucidated the observed increased ability of drops to reside on inclines using wetting mechanics and presented an elementary mathematical description of the extent of aerosol coverage on the surface, which has implications for the mechanics of aerosol growth into drops. The structural changes in enhanced green fluorescent protein (EGFP) observed after acoustic dispensation necessitated all samples in a fluorimetric assay to involve equal nebulized volumes of the fluorescent protein marker for measurement consistency.
引用
收藏
页码:3631 / 3639
页数:9
相关论文
共 41 条
[1]   Role of superhydrophobicity in the biological activity of fibronectin at the cell-material interface [J].
Ballester-Beltran, Jose ;
Rico, Patricia ;
Moratal, David ;
Song, Wenlong ;
Mano, Joao F. ;
Salmeron-Sanchez, Manuel .
SOFT MATTER, 2011, 7 (22) :10803-10811
[2]   Purity of the sacred lotus, or escape from contamination in biological surfaces [J].
Barthlott, W ;
Neinhuis, C .
PLANTA, 1997, 202 (01) :1-8
[3]   Bouncing or sticky droplets:: Impalement transitions on superhydrophobic micropatterned surfaces [J].
Bartolo, D ;
Bouamrirene, F ;
Verneuil, É ;
Buguin, A ;
Silberzan, P ;
Moulinet, S .
EUROPHYSICS LETTERS, 2006, 74 (02) :299-305
[4]   Self-cleaning surfaces - virtual realities [J].
Blossey, R .
NATURE MATERIALS, 2003, 2 (05) :301-306
[5]   Restoring Superhydrophobicity of Lotus Leaves with Vibration-Induced Dewetting [J].
Boreyko, Jonathan B. ;
Chen, Chuan-Hua .
PHYSICAL REVIEW LETTERS, 2009, 103 (17)
[6]  
Boyd RW, 1983, RADIOMETRY DETECTION
[7]   Paper Microzone Plates [J].
Carrilho, Emanuel ;
Phillips, Scott T. ;
Vella, Sarah J. ;
Martinez, Andres W. ;
Whitesides, George M. .
ANALYTICAL CHEMISTRY, 2009, 81 (15) :5990-5998
[8]   ELECTROLESS SILVER PLATING OF OXIDE PARTICLES IN AQUEOUS-SOLUTION [J].
CHANG, H ;
PITT, CH ;
ALEXANDER, GB .
JOURNAL OF MATERIALS SCIENCE, 1993, 28 (19) :5207-5210
[9]   Is the lotus leaf superhydrophobic? [J].
Cheng, YT ;
Rodak, DE .
APPLIED PHYSICS LETTERS, 2005, 86 (14) :1-3
[10]   Transparency-based microplates for fluorescence quantification [J].
Cheong, Brandon Huey-Ping ;
Vu Diep ;
Ng, Tuck Wah ;
Liew, Oi Wah .
ANALYTICAL BIOCHEMISTRY, 2012, 422 (01) :39-45