WNT signaling and cancer stemness

被引:109
作者
Katoh, Masuko [1 ]
Katoh, Masaru [1 ,2 ,3 ]
机构
[1] M&M Precis Med, Tokyo, Japan
[2] Natl Canc Ctr, Dept Om Network, Tokyo, Japan
[3] Natl Canc Ctr, Dept Clin Genom, Tokyo, Japan
关键词
TARGETED THERAPY; CELLS; SENESCENCE; EXPRESSION; PATHWAY; TUMORS; MYC;
D O I
10.1042/EBC20220016
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cancer stemness, defined as the self-renewal and tumor-initiation potential of cancer stem cells (CSCs), is a cancer biology property featuring activation of CSC signaling net-works. Canonical WNT signaling through Frizzled and LRP5/6 receptors is transmitted to the 13-catenin-TCF/LEF-dependent transcription machinery to up-regulate MYC, CCND1, LGR5, SNAI1, IFNG, CCL28, CD274 (PD-L1) and other target genes. Canonical WNT sig-naling causes expansion of rapidly cycling CSCs and modulates both immune surveil-lance and immune tolerance. In contrast, noncanonical WNT signaling through Frizzled or the ROR1/2 receptors is transmitted to phospholipase C, Rac1 and RhoA to control transcriptional outputs mediated by NFAT, AP-1 and YAP-TEAD, respectively. Noncanon-ical WNT signaling supports maintenance of slowly cycling, quiescent or dormant CSCs and promotes epithelial-mesenchymal transition via crosstalk with TGF13 (transforming growth factor -13) signaling cascades, while the TGF13 signaling network induces immune evasion. The WNT signaling network orchestrates the functions of cancer-associated fi-broblasts, endothelial cells and immune cells in the tumor microenvironment and fine-tunes stemness in human cancers, such as breast, colorectal, gastric and lung cancers. Here, WNT-related cancer stemness features, including proliferation/dormancy plasticity, epithelial-mesenchymal plasticity and immune-landscape plasticity, will be discussed. Por-cupine inhibitors, 13-catenin protein-protein interaction inhibitors, 13-catenin proteolysis tar-geting chimeras, ROR1 inhibitors and ROR1-targeted biologics are investigational drugs targeting WNT signaling cascades. Mechanisms of cancer plasticity regulated by the WNT signaling network are promising targets for therapeutic intervention; however, further under-standing of context-dependent reprogramming trajectories might be necessary to optimize the clinical benefits of WNT-targeted monotherapy and applied combination therapy for pa-tients with cancer.
引用
收藏
页码:319 / 331
页数:13
相关论文
共 83 条
[1]   β-Catenin-Independent Roles of Wnt/LRP6 Signaling [J].
Acebron, Sergio P. ;
Niehrs, Christof .
TRENDS IN CELL BIOLOGY, 2016, 26 (12) :956-967
[2]   Molecular and Biochemical Aspects of the PD-1 Checkpoint Pathway [J].
Boussiotis, Vassiliki A. .
NEW ENGLAND JOURNAL OF MEDICINE, 2016, 375 (18) :1767-1778
[3]   Myc and cell cycle control [J].
Bretones, Gabriel ;
Dolores Delgado, M. ;
Leon, Javier .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2015, 1849 (05) :506-516
[4]   Parsing β-catenin's cell adhesion and Wnt signaling functions in malignant mammary tumor progression [J].
Buechel, David ;
Sugiyama, Nami ;
Rubinstein, Natalia ;
Saxena, Meera ;
Kalathur, Ravi K. R. ;
Luond, Fabiana ;
Vafaizadeh, Vida ;
Valenta, Tomas ;
Hausmann, George ;
Cantu, Claudio ;
Basler, Konrad ;
Christofori, Gerhard .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (34)
[5]   Mutations and mechanisms of WNT pathway tumour suppressors in cancer [J].
Bugter, Jeroen M. ;
Fenderico, Nicola ;
Maurice, Madelon M. .
NATURE REVIEWS CANCER, 2021, 21 (01) :5-21
[6]   MYC regulates the antitumor immune response through CD47 and PD-L1 [J].
Casey, Stephanie C. ;
Tong, Ling ;
Li, Yulin ;
Do, Rachel ;
Walz, Susanne ;
Fitzgerald, Kelly N. ;
Gouw, Arvin M. ;
Baylot, Virginie ;
Guetgemann, Ines ;
Eilers, Martin ;
Felsher, Dean W. .
SCIENCE, 2016, 352 (6282) :227-231
[7]   Regenerative Reprogramming of the Intestinal Stem Cell State via Hippo Signaling Suppresses Metastatic Colorectal Cancer [J].
Cheung, Priscilla ;
Xiol, Jordi ;
Dill, Michael T. ;
Yuan, Wei-Chien ;
Panero, Riccardo ;
Roper, Jatin ;
Osorio, Fernando G. ;
Maglic, Dejan ;
Li, Qi ;
Gurung, Basanta ;
Calogero, Raffaele A. ;
Yilmaz, Omer H. ;
Mao, Junhao ;
Camargo, Fernando D. .
CELL STEM CELL, 2020, 27 (04) :590-+
[8]   CDK12 drives breast tumor initiation and trastuzumab resistance via WNT and IRS1-ErbB-PI3K signaling [J].
Choi, Hee-Joo ;
Jin, Sora ;
Cho, Hani ;
Won, Hee-Young ;
An, Hee Woon ;
Jeong, Ga-Young ;
Park, Young-Un ;
Kim, Hyung-Yong ;
Park, Mi Kyung ;
Son, Taekwon ;
Min, Kyueng-Whan ;
Jang, Ki-Seok ;
Oh, Young-Ha ;
Lee, Jeong-Yeon ;
Kong, Gu .
EMBO REPORTS, 2019, 20 (10)
[9]   Transcriptomic Determinants of Response to Pembrolizumab Monotherapy across Solid Tumor Types [J].
Cristescu, Razvan ;
Nebozhyn, Michael ;
Zhang, Chunsheng ;
Albright, Andrew ;
Kobie, Julie ;
Huang, Lingkang ;
Zhao, Qing ;
Wang, Anran ;
Ma, Hua ;
Cao, Z. Alexander ;
Morrissey, Michael ;
Ribas, Antoni ;
Grivas, Petros ;
Cescon, David W. ;
McClanahan, Terrill K. ;
Snyder, Alexandra ;
Ayers, Mark ;
Lunceford, Jared ;
Loboda, Andrey .
CLINICAL CANCER RESEARCH, 2022, 28 (08) :1680-1689
[10]   Fibroblasts as immune regulators in infection, inflammation and cancer [J].
Davidson, Sarah ;
Coles, Mark ;
Thomas, Tom ;
Kollias, George ;
Ludewig, Burkhard ;
Turley, Shannon ;
Brenner, Michael ;
Buckley, Christopher D. .
NATURE REVIEWS IMMUNOLOGY, 2021, 21 (11) :704-717