Combined Composite Scintillation Detector for Separate Measurements of Fast and Thermal Neutrons

被引:0
|
作者
Galunov, Nikolai Z. [1 ]
Grinyov, Boris V. [1 ]
Karavaeva, Natalya L. [1 ]
Martynenko, Eugenia V. [1 ]
Tarasenko, Oleg A. [1 ]
Gerasymov, Yaroslav V. [1 ]
Sidletskiy, Oleg Ts [1 ]
机构
[1] Natl Acad Sci Ukraine, Inst Scintillat Mat, UA-61001 Kharkov, Ukraine
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose and study a new composite scintillation detector. It is the combined detector for separate detection of fast neutrons and thermal neutrons in the presence of gamma background radiation. The combined detector consists of two scintillation parts. It is the organic composite scintillator that is made from stilbene crystalline grains (grains with sizes from 2.5 to 3.0 mm) those we introduce in organosilicone matrix. The second part of the detector is a thin inorganic composite detector of thermal neutrons that contains Ce:GPS (Ce-doped gadolinium pyrosilicate) crystalline grains those are in the matrix of the same type. To detect thermal neutrons with minimal gamma background the single-layer composite material was used (grains with sizes in the following ranges: from 0.06 to 0.1, from 0.1 to 0.3 and from 0.3 to 0.5 mm). For chosen values of the sizes of the grains the efficiency of detection of gamma radiations with energies lower than 150 keV is negligible. The comparison of the values of scintillation amplitudes in the range of thermal neutron detection and in the range of recoil proton spectrum shows that the signals from thermal and fast neutrons do not overlap. Therefore the analysis of these two spectra can be run separately in different energy windows. The combined composite detector has no technological limitations on area of it input window. It needs screening from gamma radiations of low energies (corresponding to 33 keV peak from Gd conversion electrons or corresponding to the total range of 33 keV and 77 keV peaks). With increase of a grain size the efficiency of thermal neutrons detection growths. On the other hand the detection of the signals not only in the range of 33 keV peak but in the range of 77 keV peak as well causes the increase of the thickness of gamma-shielding and use a witness detector.
引用
收藏
页码:1813 / 1818
页数:6
相关论文
共 50 条
  • [31] Measuring fast neutrons with large liquid scintillation detector for ultra-low background experiments
    Zhang, C.
    Mei, D. -M.
    Davis, P.
    Woltman, B.
    Gray, F.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2013, 729 : 138 - 146
  • [32] A scintillation detector of protons and neutrons, products of a dd reaction
    Kornilov, VN
    Maximov, VV
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2001, 44 (02) : 219 - 223
  • [33] RESOLUTION OF A POSITION-SENSITIVE SCINTILLATION DETECTOR FOR NEUTRONS
    GROSSHOG, G
    NUCLEAR INSTRUMENTS & METHODS, 1975, 127 (02): : 183 - 188
  • [34] Detection of fast neutrons with particle tracking detector Timepix combined with plastic scintillator
    Uher, J.
    Jakubek, J.
    RADIATION MEASUREMENTS, 2011, 46 (12) : 1624 - 1627
  • [35] TWIN SCINTILLATION FAST NEUTRON DETECTOR
    BERLMAN, IB
    MARINELLI, LD
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1956, 27 (10): : 858 - 859
  • [36] SCINTILLATION DETECTOR FOR THE BROOKHAVEN FAST CHOPPER
    PALEVSKY, H
    MUETHER, HR
    STOLOVY, A
    PHYSICAL REVIEW, 1954, 93 (04): : 920 - 921
  • [37] A new fast timing scintillation detector
    Suzuki, Noboru
    Origas, S.
    Kuramochi, H.
    Sakuyama, H.
    Suzuki, Noriko
    PROCEEDINGS OF THE 29TH INTERNATIONAL COSMIC RAY CONFERENCE VOL 8: HE 1.5, 2005, : 205 - 208
  • [38] A HIGH EFFICIENCY DETECTOR FOR FAST NEUTRONS
    POSS, HL
    FALK, CE
    YUAN, LCL
    PHYSICAL REVIEW, 1951, 83 (01): : 242 - 242
  • [39] Boron nitride neutron detector with the ability for detecting both thermal and fast neutrons
    Tingsuwatit, A.
    Maity, A.
    Grenadier, S. J.
    Li, J.
    Lin, J. Y.
    Jiang, H. X.
    APPLIED PHYSICS LETTERS, 2022, 120 (23)
  • [40] DESIGN CRITERIA FOR A COMBINED SCINTILLATION DETECTOR
    PETR, I
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY-LETTERS, 1987, 119 (06): : 499 - 502