On the largest-eigenvalue process for generalized Wishart random matrices

被引:0
作者
Dieker, A. B. [1 ]
Warren, J. [2 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
[2] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
来源
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS | 2009年 / 6卷
关键词
Random matrices; Jackson series network; last-passage percolation; Wishart ensemble; change of measure; interlacing;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Using a change-of-measure argument, we prove an equality in law between the process of largest eigenvalues in a generalized Wishart random-matrix process and a last-passage percolation process. This equality in law was conjectured by Borodin and Peche (2008).
引用
收藏
页码:369 / 376
页数:8
相关论文
共 12 条
[1]  
[Anonymous], ARXIV08010100
[2]   GUEs and queues [J].
Baryshnikov, Y .
PROBABILITY THEORY AND RELATED FIELDS, 2001, 119 (02) :256-274
[3]   Airy kernel with two sets of parameters in directed percolation and Random Matrix Theory [J].
Borodin, Alexei ;
Peche, Sandrine .
JOURNAL OF STATISTICAL PHYSICS, 2008, 132 (02) :275-290
[4]  
DEFOSSEUX M, 2008, ARXIV08024183
[5]   Determinantal transition kernels for some interacting particles on the line [J].
Dieker, A. B. ;
Warren, J. .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2008, 44 (06) :1162-1172
[6]  
DOUMERC Y, 2003, LECT NOTES MATH, V1832, P370
[7]  
FORRESTER PJ, 2006, INT MATH RES NOTICES, V36
[8]  
Fulton W., 1997, Young tableaux , London Mathematical Society Student Texts, V35
[9]   Shape fluctuations and random matrices [J].
Johansson, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 209 (02) :437-476
[10]   A multi-dimensional Markov chain and the Meixner ensemble [J].
Johansson, Kurt .
ARKIV FOR MATEMATIK, 2010, 48 (01) :79-95