COMPUTING L-FUNCTIONS AND SEMISTABLE REDUCTION OF SUPERELLIPTIC CURVES

被引:21
作者
Bouw, Irene I. [1 ]
Wewers, Stefan [1 ]
机构
[1] Univ Ulm, Inst Reine Math, Helmholtzstr 18, D-89081 Ulm, Germany
关键词
HYPERELLIPTIC CURVES; MODULI SPACE; DISCRIMINANT; CONDUCTOR; MODELS;
D O I
10.1017/S0017089516000057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an explicit description of the stable reduction of superelliptic curves of the form y(n) = f(x) at primes p whose residue characteristic is prime to the exponent n. We then use this description to compute the local L-factor and the exponent of conductor at p of the curve.
引用
收藏
页码:77 / 108
页数:32
相关论文
共 27 条
[1]  
Abbes Ahmed., 2000, COURBES SEMISTABLES, V187, P59
[2]  
Arzdorf K., 2012, PREPRINT
[3]  
Arzdorf K., 2012, THESIS
[4]  
Borner M., 2015, ARXIV150400508
[5]  
Chenevert G., 2004, SOME REMARKS F UNPUB
[6]  
Deligne P., 1971, SEM BOURBAKI 389 197, V1968/69, P139
[7]  
Deligne P., 1969, PUBL MATH-PARIS, V36, P75, DOI 10.1007/BF02684599
[8]   Numerical verification of Beilinson's conjecture for K2 of hyperelliptic curves [J].
Dokchitser, T ;
de Jeu, R ;
Zagier, D .
COMPOSITIO MATHEMATICA, 2006, 142 (02) :339-373
[9]   Computing special values of motivic L-functions [J].
Dokchitser, T .
EXPERIMENTAL MATHEMATICS, 2004, 13 (02) :137-149
[10]  
GERRITZEN L, 1988, P K NED AKAD A MATH, V91, P131