Rutherford backscattering spectrometry analysis of InGaAs nanostructures

被引:8
作者
Laricchiuta, Grazia [1 ,2 ]
Vandervorst, Wilfried [1 ,2 ]
Vickridge, Ian [3 ]
Mayer, Matej [4 ]
Meersschaut, Johan [1 ,2 ]
机构
[1] Katholieke Univ Leuven, IKS, Celestijnenlaan 200D, B-3001 Leuven, Belgium
[2] IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
[3] Sorbonne Univ, INSP, Pl Jussieu 4, F-75005 Paris, France
[4] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A | 2019年 / 37卷 / 02期
关键词
ION-BEAM ANALYSIS; GROWTH; RBS; SIMULATION; QUANTITY; DETECTOR;
D O I
10.1116/1.5079520
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, the authors demonstrate that Rutherford backscattering spectrometry (RBS) can be extended from a metrology concept applied to blanket films toward a method to analyze confined nanostructures. By a combination of measurements on an ensemble of devices and extensive simulations, it is feasible to quantify the composition of InGaAs nanostructures (16-50 nm) embedded periodically in an SiO2 matrix. The methodology is based on measuring multiple fins simultaneously while using the geometrical shape of the structures, obtained from a transmission electron microscopy analysis, as input for a multitude of trajectory calculations. In this way, the authors are able to reproduce the RBS spectra and to demonstrate the sensitivity of the RBS spectra to the quantitative elemental composition of the nanostructures and to variations of their shape and mean areal coverage down to one nanometer. Thus, the authors establish RBS as a viable quantitative characterization technique to probe the composition and structure of periodic arrays of nanostructures. Published by the AVS.
引用
收藏
页数:5
相关论文
共 39 条
[1]   Charge Collection Efficiency in a segmented semiconductor detector interstrip region [J].
Alarcon-Diez, V. ;
Vickridge, I. ;
Jaksic, M. ;
Grilj, V. ;
Schmidt, B. ;
Lange, H. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2017, 406 :148-151
[2]   Advanced physics and algorithms in the IBA DataFurnace [J].
Barradas, N. P. ;
Jeynes, C. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2008, 266 (08) :1875-1879
[3]  
Biersack J. P., 1985, The Stopping and Range of Ions in Solids, DOI DOI 10.1016/B978-0-12-780620-4.50007-0
[4]  
Bohr N., 1948, MAT FYS MEDD DAN VID, V18, P1
[5]  
Chu W.-K., 1978, Backscattering Spectroscopy
[6]   CALCULATION OF ENERGY STRAGGLING FOR PROTONS AND HELIUM IONS [J].
CHU, WK .
PHYSICAL REVIEW A, 1976, 13 (06) :2057-2060
[7]   INTERCOMPARISON OF ABSOLUTE STANDARDS FOR RBS STUDIES [J].
COHEN, C ;
DAVIES, JA ;
DRIGO, AV ;
JACKMAN, TE .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, 1983, 218 (1-3) :147-148
[8]   High accuracy traceable Rutherford backscattering spectrometry of ion implanted samples [J].
Colaux, J. L. ;
Jeynes, C. .
ANALYTICAL METHODS, 2014, 6 (01) :120-129
[9]   GROWTH AND CHARACTERIZATION OF RELAXED EPILAYERS OF INGAAS ON GAAS [J].
DUNSTAN, DJ ;
DIXON, RH ;
KIDD, P ;
HOWARD, LK ;
WILKINSON, VA ;
LAMBKIN, JD ;
JEYNES, C ;
HALSALL, MP ;
LANCEFIELD, D ;
EMENY, MT ;
GOODHEW, PJ ;
HOMEWOOD, KP ;
SEALY, BJ ;
ADAMS, AR .
JOURNAL OF CRYSTAL GROWTH, 1993, 126 (04) :589-600
[10]   Combining dynamic modelling codes with medium energy ion scattering measurements to characterise plasma doping [J].
England, J. ;
Moeller, W. ;
van den Berg, J. A. ;
Rossall, A. ;
Min, W. J. ;
Kim, J. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2017, 409 :60-64