Localized Dimerization and Nucleoid Binding Drive Gradient Formation by the Bacterial Cell Division Inhibitor MipZ

被引:80
|
作者
Kiekebusch, Daniela [1 ,2 ,3 ]
Michie, Katharine A. [4 ]
Essen, Lars-Oliver [3 ,5 ]
Loewe, Jan [4 ]
Thanbichler, Martin [1 ,2 ,3 ]
机构
[1] Max Planck Inst Terr Microbiol, D-35043 Marburg, Germany
[2] Philipps Univ, Dept Biol, Microbiol Lab, D-35043 Marburg, Germany
[3] LOEWE Ctr Synthet Microbiol, D-35043 Marburg, Germany
[4] MRC Lab Mol Biol, Cambridge CB2 OQH, England
[5] Philipps Univ, Dept Chem, D-35032 Marburg, Germany
基金
英国医学研究理事会;
关键词
FAMILY KINASE POM1; CHROMOSOME SEGREGATION; ESCHERICHIA-COLI; SPATIAL GRADIENT; MIND ATPASE; PROTEIN; DNA; CYCLE; MEMBRANE; SWITCH;
D O I
10.1016/j.molcel.2012.03.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein gradients play a central role in the spatial organization of cells, but the mechanisms of their formation are incompletely understood. This study analyzes the determinants responsible for establishing bipolar gradients of the ATPase MipZ, a key regulator of division site placement in Caulobacter crescentus. We have solved the crystal structure of MipZ in different nucleotide states, dissected its ATPase cycle, and investigated its interaction with FtsZ, ParB, and the nucleoid. Our results suggest that the polar ParB complexes locally stimulate the formation of ATP-bound MipZ dimers, which are then retained near the cell poles through association with chromosomal DNA. Due to their intrinsic ATPase activity, dimers eventually dissociate into freely diffusible monomers that undergo spontaneous nucleotide exchange and are recaptured by ParB. These findings clarify the molecular function of a conserved gradient-forming system and reveal mechanistic principles that might be commonly used to sustain protein gradients within cells.
引用
收藏
页码:245 / 259
页数:15
相关论文
共 50 条
  • [1] Generation of a protein gradient within a bacterial cell by the cell division regulator MipZ.
    Kiekebusch, D.
    Michie, K. A.
    Essen, L-O.
    Loewe, J.
    Thanbichler, M.
    MOLECULAR BIOLOGY OF THE CELL, 2012, 23
  • [2] Nucleoid occlusion and bacterial cell division
    Ling Juan Wu
    Jeff Errington
    Nature Reviews Microbiology, 2012, 10 : 8 - 12
  • [3] Nucleoid occlusion and bacterial cell division
    Wu, Ling Juan
    Errington, Jeff
    NATURE REVIEWS MICROBIOLOGY, 2012, 10 (01) : 8 - 12
  • [4] Bacterial nucleoid, DNA replication, segregation and cell division
    Nanninga, N
    Woldringh, C
    Rouviere-Yaniv, J
    BIOCHIMIE, 2001, 83 (02) : 147 - 148
  • [5] The Bacterial Cell Cycle: DNA Replication, Nucleoid Segregation, and Cell Division
    A. A. Prozorov
    Microbiology, 2005, 74 : 375 - 387
  • [6] The bacterial cell cycle: DNA replication, nucleoid segregation, and cell division
    Prozorov, AA
    MICROBIOLOGY, 2005, 74 (04) : 375 - 387
  • [7] The Bacterial Cell: Coupling between Growth, Nucleoid Replication, Cell Division, and Shape
    Mannik, Jaan
    Woldringh, Conrad L.
    Zaritsky, Arieh
    FRONTIERS IN MICROBIOLOGY, 2016, 7
  • [8] A gradient-forming MipZ protein mediating the control of cell division in the magnetotactic bacterium Magnetospirillum gryphiswaldense
    Toro-Nahuelpan, Mauricio
    Corrales-Guerrero, Laura
    Zwiener, Theresa
    Osorio-Valeriano, Manuel
    Mueller, Frank-Dietrich
    Plitzko, Juergen M.
    Bramkamp, Marc
    Thanbichler, Martin
    Schueler, Dirk
    MOLECULAR MICROBIOLOGY, 2019, 112 (05) : 1423 - 1439
  • [9] The PomXYZ Proteins Self-Organize on the Bacterial Nucleoid to Stimulate Cell Division
    Schumacher, Dominik
    Bergeler, Silke
    Harms, Andrea
    Vonck, Janet
    Huneke-Vogt, Sabrina
    Frey, Erwin
    Sogaard-Andersen, Lotte
    DEVELOPMENTAL CELL, 2017, 41 (03) : 299 - +
  • [10] Investigation of the Role of Dimerization in the MinE Regulator of Bacterial Cell Division
    McLeod, Laura
    Ayed, Saud
    Hafizi, Fatima
    Goto, Natalie
    PROTEIN SCIENCE, 2012, 21 : 165 - 165