Ordinary percolation with discontinuous transitions

被引:86
作者
Boettcher, Stefan [1 ]
Singh, Vijay [1 ]
Ziff, Robert M. [2 ,3 ]
机构
[1] Emory Univ, Dept Phys, Atlanta, GA 30322 USA
[2] Univ Michigan, Ctr Study Complex Syst, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
EXPLOSIVE PERCOLATION;
D O I
10.1038/ncomms1774
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Percolation on a one-dimensional lattice and fractals, such as the Sierpinski gasket, is typically considered to be trivial, because they percolate only at full bond density. By dressing up such lattices with small-world bonds, a novel percolation transition with explosive cluster growth can emerge at a non-trivial critical point. There, the usual order parameter, describing the probability of any node to be part of the largest cluster, jumps instantly to a finite value. Here we provide a simple example in the form of a small-world network consisting of a one-dimensional lattice which, when combined with a hierarchy of long-range bonds, reveals many features of this transition in a mathematically rigorous manner.
引用
收藏
页数:5
相关论文
共 32 条
[1]   Explosive Percolation in Random Networks [J].
Achlioptas, Dimitris ;
D'Souza, Raissa M. ;
Spencer, Joel .
SCIENCE, 2009, 323 (5920) :1453-1555
[2]   Apollonian networks: Simultaneously scale-free, small world, Euclidean, space filling, and with matching graphs [J].
Andrade, JS ;
Herrmann, HJ ;
Andrade, RFS ;
da Silva, LR .
PHYSICAL REVIEW LETTERS, 2005, 94 (01)
[3]  
[Anonymous], 2003, Linked: How everything is connected to everything else and what it means
[4]   Explosive Percolation via Control of the Largest Cluster [J].
Araujo, N. A. M. ;
Herrmann, H. J. .
PHYSICAL REVIEW LETTERS, 2010, 105 (03)
[5]   Tricritical Point in Explosive Percolation [J].
Araujo, Nuno A. M. ;
Andrade, Jose S., Jr. ;
Ziff, Robert M. ;
Herrmann, Hans J. .
PHYSICAL REVIEW LETTERS, 2011, 106 (09)
[6]   Multiscale mobility networks and the spatial spreading of infectious diseases [J].
Balcan, Duygu ;
Colizza, Vittoria ;
Goncalves, Bruno ;
Hu, Hao ;
Ramasco, Jose J. ;
Vespignani, Alessandro .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (51) :21484-21489
[7]   Spatial networks [J].
Barthelemy, Marc .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2011, 499 (1-3) :1-101
[8]   Critical percolation phase and thermal Berezinskii-Kosterlitz-Thouless transition in a scale-free network with short-range and long-range random bonds [J].
Berker, A. Nihat ;
Hinczewski, Michael ;
Netz, Roland R. .
PHYSICAL REVIEW E, 2009, 80 (04)
[9]   Fixed-point properties of the Ising ferromagnet on the Hanoi networks [J].
Boettcher, S. ;
Brunson, C. T. .
PHYSICAL REVIEW E, 2011, 83 (02)
[10]   Patchy percolation on a hierarchical network with small-world bonds [J].
Boettcher, Stefan ;
Cook, Jessica L. ;
Ziff, Robert M. .
PHYSICAL REVIEW E, 2009, 80 (04)