INFINITELY MANY SOLUTIONS FOR A DIRICHLET BOUNDARY VALUE PROBLEM DEPENDING ON TWO PARAMETERS

被引:5
作者
Afrouzi, Ghasem A. [1 ]
Hadjian, Armin [1 ]
机构
[1] Univ Mazandaran, Dept Math, Fac Math Sci, Babol Sar, Iran
关键词
Doubly eigenvalue boundary value problem; Ricceri's variational principle; infinitely many solutions; SYSTEMS;
D O I
10.3336/gm.48.2.09
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using Ricceri's variational principle, we prove the existence of infinitely many weak solutions for a Dirichlet doubly eigenvalue boundary value problem.
引用
收藏
页码:357 / 371
页数:15
相关论文
共 23 条
[1]   Infinitely many solutions for a class of Dirichlet quasilinear elliptic systems [J].
Afrouzi, G. A. ;
Hadjian, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (01) :265-272
[2]  
[Anonymous], 2012, ELECTRON J DIFFER EQ
[3]  
[Anonymous], 2009, PANAMER MATH J
[4]  
[Anonymous], 1990, NONLINEAR FUNCTIONAL
[5]   VARIATIONAL ANALYSIS FOR A NONLINEAR ELLIPTIC PROBLEM ON THE SIERPINSKI GASKET [J].
Bonanno, Gabriele ;
Bisci, Giovanni Molica ;
Radulescu, Vicentiu .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2012, 18 (04) :941-953
[6]   Infinitely many solutions for a class of nonlinear elliptic problems on fractals [J].
Bonanno, Gabriele ;
Bisci, Giovanni Molica ;
Radulescu, Vicentiu .
COMPTES RENDUS MATHEMATIQUE, 2012, 350 (3-4) :187-191
[7]   Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz-Sobolev spaces [J].
Bonanno, Gabriele ;
Bisci, Giovanni Molica ;
Radulescu, Vicentiu .
COMPTES RENDUS MATHEMATIQUE, 2011, 349 (5-6) :263-268
[8]   Infinitely many solutions for a fourth-order elastic beam equation [J].
Bonanno, Gabriele ;
Di Bella, Beatrice .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2011, 18 (03) :357-368
[9]   Arbitrarily small weak solutions for a nonlinear eigenvalue problem in Orlicz-Sobolev spaces [J].
Bonanno, Gabriele ;
Bisci, Giovanni Molica ;
Radulescu, Vicentiu .
MONATSHEFTE FUR MATHEMATIK, 2012, 165 (3-4) :305-318
[10]   Infinitely many solutions for a mixed boundary value problem [J].
Bonanno, Gabriele ;
Tornatore, Elisabetta .
ANNALES POLONICI MATHEMATICI, 2010, 99 (03) :285-293