Simultaneous estimation of parameter uncertainties and disturbance trajectory for robotic manipulator

被引:0
|
作者
Agarwal, Vijyant [1 ]
Parthasarathy, Harish [2 ]
机构
[1] Netaji Subhas Univ Technol, Div MPAE, New Delhi, India
[2] Netaji Subhas Univ Technol, Div Elect & Commun Engn, New Delhi, India
关键词
Nonlinear disturbance observer (NDO); parameter estimation; maximum likelihood estimation (MLE); Cramer Rao lower bond (CRLB); Lyapunov energy function; stochastic process; OBSERVER DESIGN; IDENTIFICATION; SYSTEMS;
D O I
10.1007/s12046-019-1092-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, a systematic approach is proposed to estimate the disturbance trajectory using a new generalized Lyapunov matrix valued function of the joint angle variables and the robot's physical parameters using the maximum likelihood estimate (MLE). It is also proved that the estimated disturbance error remains bounded over the infinite time interval. Here, the manipulator is excited with a periodic torque and by the position and velocity data collected at discrete time points construct an ML estimator of the parameters at time t + dt. This process is carried over hand in hand in a recursive manner, thus resulting in a novel unified disturbance rejection and parameter estimation in a general frame work. These parameter estimates are then analyzed for mean and covariance and compared with the Cramer Rao Lower Bound (CRLB) for the parametric statistical model. Using the Lyapunov method, convergence of the "disturbance estimation error'' to zero is established. We assume that a Lyapunov matrix dependent on the link angle and form the energy corresponding to this matrix as a quadratic function of the disturbance estimate error. Using the dynamics of the disturbance observer, the rate of change of the Lyapunov energy is evaluated as a quadratic form in the disturbance error. This quadratic form is negative definite for the angular velocity in a certain range and for a certain structured form of the Lyapunov energy matrix. The most general form of the Lyapunov matrix is obtained that guarantees negative rate of increase of the energy and a better bound on the disturbance estimation error convergence rate to zero. This is possible only because we have used the most general form of the Lyapunov energy matrix.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Simultaneous estimation of parameter uncertainties and disturbance trajectory for robotic manipulator
    VIJYANT AGARWAL
    HARISH PARTHASARATHY
    Sādhanā, 2019, 44
  • [2] Parameter Estimation for Robotic Manipulator Systems
    Zhu, Qianfeng
    Man, Zhihong
    Cao, Zhenwei
    Zheng, Jinchuan
    Wang, Hai
    MACHINES, 2022, 10 (05)
  • [3] Parameter Estimation of Robotic Manipulator in Frequency Domain
    Zhu, Qianfeng
    Man, Zhihong
    Cao, Zhenwei
    Zheng, Jinchuan
    Wang, Hai
    2021 INTERNATIONAL CONFERENCE ON ADVANCED MECHATRONIC SYSTEMS (ICAMECHS), 2021, : 109 - 114
  • [4] Estimation of lateral disturbance under parameter uncertainties
    K. W. Kim
    S. B. Lee
    C. S. Park
    K. Yi
    International Journal of Automotive Technology, 2015, 16 : 427 - 433
  • [5] Estimation of lateral disturbance under parameter uncertainties
    Kim, K. W.
    Lee, S. B.
    Park, C. S.
    Yi, K.
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2015, 16 (03) : 427 - 433
  • [6] Disturbance estimation based tracking control for a robotic manipulator
    Liu, CS
    Peng, H
    PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 92 - 96
  • [7] Trajectory Tracking Control for a Robotic Manipulator Using Nonlinear Active Disturbance Rejection Control
    Ali, Mohammed
    Alexander, Charles K.
    PROCEEDINGS OF THE ASME 10TH ANNUAL DYNAMIC SYSTEMS AND CONTROL CONFERENCE, 2017, VOL 2, 2017,
  • [8] Simultaneous State and Parameter Estimation with Trajectory Shape Constraints (Poster)
    Li, Keyi
    Zhou, Gongjian
    Kirubarajan, Thia
    He, Jiazhou
    2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,
  • [9] Adaptive Backstepping Sliding Mode Control based on Nonlinear Disturbance Observer for Trajectory Tracking of Robotic Manipulator
    Mustafa, Aquib
    Dhar, Narendra K.
    Agrawal, Pooja
    Verma, Nishchal K.
    2017 2ND INTERNATIONAL CONFERENCE ON CONTROL AND ROBOTICS ENGINEERING (ICCRE2017), 2017,
  • [10] Adaptive Control for a Robotic Manipulator with Uncertainties and Input Saturations
    Trong-Toan Tran
    Ge, Shuzhi Sam
    He, Wei
    2015 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, 2015, : 1525 - 1530