Equivalence of pushdown automata via first-order grammars

被引:2
作者
Jancar, Petr [1 ]
机构
[1] Palacky Univ Olomouc, Fac Sci, Dept Comp Sci, Olomouc, Czech Republic
关键词
Pushdown automata; First-order grammars; Bisimulation equivalence; DECIDABILITY; BISIMILARITY;
D O I
10.1016/j.jcss.2020.07.004
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A decidability proof for bisimulation equivalence of first-order grammars is given. It is an alternative proof for a result by Senizergues (1998, 2005) that subsumes his affirmative solution of the famous decidability question for deterministic pushdown automata. The presented proof is conceptually simpler, and a particular novelty is that it is not given as two semidecision procedures but it provides an explicit algorithm that might be amenable to a complexity analysis. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:86 / 112
页数:27
相关论文
共 27 条
[1]   DECIDABILITY OF BISIMULATION EQUIVALENCE FOR PROCESSES GENERATING CONTEXT-FREE LANGUAGES [J].
BAETEN, JCM ;
BERGSTRA, JA ;
KLOP, JW .
JOURNAL OF THE ACM, 1993, 40 (03) :653-682
[2]   Bisimilarity of Pushdown Automata is Nonelementary [J].
Benedikt, Michael ;
Goeller, Stefan ;
Kiefer, Stefan ;
Murawski, Andrzej S. .
2013 28TH ANNUAL IEEE/ACM SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2013, :488-497
[3]  
Broadbent C., 2012, LEIBNIZ INT P INF, V18, P160, DOI DOI 10.4230/LIPICS.FSTTCS.2012.160
[4]  
Burkart O., 1995, Mathematical Foundations of Computer Science 1995. 20th International Symposium, MFCS '95. Proceedings, P423
[5]  
Caucal D., 1995, CSLI LECT NOTES, V53, P85
[6]  
Courcelle Bruno, 1990, HDB THEORETICAL COMP, P459
[7]  
Czerwinski W., 2010, LIPICS, V8
[8]   A polynomial algorithm for deciding bisimilarity of normed context-free processes [J].
Hirshfeld, Y ;
Jerrum, M ;
Moller, F .
THEORETICAL COMPUTER SCIENCE, 1996, 158 (1-2) :143-159
[9]  
Jancar P., 2013, LOG METH COMPUT SCI, V9, P1
[10]   Undecidability of bisimilarity by defender's forcing [J].
Jancar, Petr ;
Srba, Jiri .
JOURNAL OF THE ACM, 2008, 55 (01)