Sum coloring and interval graphs: a tight upper bound for the minimum number of colors

被引:4
作者
Nicoloso, S [1 ]
机构
[1] CNR, Ist Anal Sistemi & Informat, I-00185 Rome, Italy
关键词
coloring; interval graphs; upper bound;
D O I
10.1016/j.disc.2003.06.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The SUM COLORING problem consists of assigning a color c(vi) E Z(+) to each vertex vi E V of a graph G = (VE) so that adjacent nodes have different colors and the sum of the c(vi)'s over all vertices vi E V is minimized. In this note we prove that the number of colors required to attain a minimum valued sum on arbitrary interval graphs does not exceed min{n; 2chi(G) - 1}. Examples from the papers [Discrete Math. 174 (1999) 125; Algorithmica 23 (1999) 109] show that the bound is tight. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:251 / 257
页数:7
相关论文
共 23 条
[1]   ON CHROMATIC NUMBER OF GRAPHS AND SET-SYSTEMS [J].
ERDOS, P ;
HAJNAL, A .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1966, 17 (1-2) :61-&
[2]  
ERDOS P, 1990, C NUMER, V71, P17
[3]   The color cost of a caterpillar [J].
Gionfriddo, M ;
Harary, F ;
Tuza, Z .
DISCRETE MATHEMATICS, 1997, 174 (1-3) :125-130
[4]  
Golumbic MC., 1980, Algorithmic Graph Theory and Perfect Graphs
[5]   Minimal coloring and strength of graphs [J].
Hajiabolhassan, H ;
Mehrabadi, ML ;
Tusserkani, R .
DISCRETE MATHEMATICS, 2000, 215 (1-3) :265-270
[6]  
HAJIABOLHASSAN H, UNPUB TABULAR GRAPHS
[7]   Approximation results for the optimum cost chromatic partition problem [J].
Jansen, K .
JOURNAL OF ALGORITHMS, 2000, 34 (01) :54-89
[8]  
Jansen K, 1997, LECT NOTES COMPUT SC, V1203, P25
[9]  
Jiang T, 1999, J GRAPH THEOR, V32, P354, DOI 10.1002/(SICI)1097-0118(199912)32:4<354::AID-JGT4>3.0.CO
[10]  
2-B