Limit Cycles of a Class of Polynomial Differential Systems Bifurcating from the Periodic Orbits of a Linear Center

被引:6
作者
Menaceur, Amor [1 ]
Boulaaras, Salah [2 ,3 ]
Alkhalaf, Salem [4 ]
Jain, Shilpi [5 ]
机构
[1] Univ Guelma, Lab Anal & Control Differential Equat Aced, Dept Maths, POB 401, Guelma 24000, Algeria
[2] Al Rass Qassim Univ, Coll Sci & Arts, Dept Math, Buraydah 51452, Saudi Arabia
[3] Univ Oran 1, Lab Fundamental & Appl Math Oran LMFAO, Ahmed Benbella 31000, Oran, Algeria
[4] Al Rass Qassim Univ, Coll Sci & Arts, Dept Comp Sci, Buraydah 51452, Saudi Arabia
[5] Poornima Coll Engn ISI 6, Dept Math, RIICO Inst Area, Sitapura Jaipur 302022, Rajasthan, India
来源
SYMMETRY-BASEL | 2020年 / 12卷 / 08期
关键词
existence; limit cycle; averaging method; Kukles system;
D O I
10.3390/sym12081346
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we study the number of limit cycles of a new class of polynomial differential systems, which is an extended work of two families of differential systems in systems considered earlier. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of a center using the averaging theory of first and second order.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 17 条
[1]   A Regularity Criterion in Weak Spaces to Boussinesq Equations [J].
Agarwal, Ravi P. ;
Gala, Sadek ;
Ragusa, Maria Alessandra .
MATHEMATICS, 2020, 8 (06)
[2]  
[Anonymous], 1964, NBS APPL MATH SERIES
[3]   Averaging methods for finding periodic orbits via Brouwer degree [J].
Buica, A ;
Llibre, J .
BULLETIN DES SCIENCES MATHEMATIQUES, 2004, 128 (01) :7-22
[4]   Coexistence of limit cycles and invariant algebraic curves for a Kukles system [J].
Chavarriga, J ;
Sáez, E ;
Szántó, I ;
Grau, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (05) :673-693
[5]   ON THE PAPER OF JIN AND WANG CONCERNING THE CONDITIONS FOR A CENTER IN CERTAIN CUBIC SYSTEMS [J].
CHRISTOPHER, CJ ;
LLOYD, NG .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1990, 22 :5-12
[6]  
Hilbert D., 1900, 2 INT C MATH PAR, V5, P253
[7]  
Kukles I. S., 1944, Dokl. Akad. Nauk. SSSR., V43, P208
[8]   LIMIT CYCLES AND INVARIANT CENTERS FOR AN EXTENDED KUKLES SYSTEM [J].
Liu, Zhenhai ;
Szanto, Ivan .
MISKOLC MATHEMATICAL NOTES, 2017, 18 (02) :947-952
[9]   Limit cycles for generalized Kukles polynomial differential systems [J].
Llibre, Jaume ;
Mereu, Ana Cristina .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (04) :1261-1271
[10]   On the Limit Cycles of a Class of Generalized Kukles Polynomial Differential Systems via Averaging Theory [J].
Makhlouf, Amar ;
Menaceur, Amor .
INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 2015