Nonlinear Schrodinger equation with unbounded or decaying radial potentials involving exponential critical growth in R2

被引:53
作者
Albuquerque, Francisco S. B. [1 ]
Alves, Claudianor O. [2 ]
Medeiros, Everaldo S. [3 ]
机构
[1] Univ Estadual Paraiba, Ctr Ciencias Exatas & Sociais Aplicadas, BR-58700070 Patos Pb, Brazil
[2] Univ Fed Campine Grande, Unidade Acad Matemat & Estat, BR-58429900 Campina Grande Pb, Brazil
[3] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
关键词
Nonlinear Schrodinger equation; Unbounded or decaying radial potentials; Exponential critical growth; Trudinger-Moser inequality; INEQUALITY;
D O I
10.1016/j.jmaa.2013.07.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence and multiplicity of solutions for the following class of nonlinear Schrodinger equations -Delta u + V(vertical bar x vertical bar)u = Q(vertical bar x vertical bar)f (u) in R-2, where V and Q are unbounded or decaying radial potentials and the nonlinearity f (s) has exponential critical growth. The approaches used here are based on a version of the Trudinger-Moser inequality and a minimax theorem. (C) 2013 Published by Elsevier Inc.
引用
收藏
页码:1021 / 1031
页数:11
相关论文
共 18 条
[1]  
Adams R., 1985, Sobolev Spaces
[2]   A singular Moser-Trudinger embedding and its applications [J].
Adimurthi ;
Sandeep, K. .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2007, 13 (5-6) :585-603
[3]  
Ambrosetti A, 2005, J EUR MATH SOC, V7, P117
[4]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[5]  
[Anonymous], RIV MAT IBEROAMERICA
[6]   NONTRIVIAL SOLUTION OF SEMILINEAR ELLIPTIC EQUATION WITH CRITICAL EXPONENT IN R2 [J].
CAO, DM .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (3-4) :407-435
[7]  
de Freitas L.R., 2010, THESIS USP SAO CARLO
[8]   ELLIPTIC-EQUATIONS IN R(2) WITH NONLINEARITIES IN THE CRITICAL GROWTH RANGE [J].
DEFIGUEIREDO, DG ;
MIYAGAKI, OH ;
RUF, B .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1995, 3 (02) :139-153
[9]   A nonhomogeneous elliptic problem involving critical growth in dimension two [J].
do O, Joo Marcos ;
Medeiros, Everaldo ;
Severo, Uberlandio .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :286-304
[10]   SHARP FORM OF AN INEQUALITY BY N TRUDINGER [J].
MOSER, J .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1971, 20 (11) :1077-&