A Characteristic Frame for Positive Intuitionistic and Relevance Logic

被引:0
作者
Weiss, Yale [1 ]
机构
[1] CUNY, Saul Kripke Ctr, Grad Ctr, 365 Fifth Ave,Room 7118, New York, NY 10016 USA
关键词
Arithmetical models; Characteristic frame; Intuitionistic logic; Relevance logic; Semilattice semantics; COMPLETENESS; SEMANTICS;
D O I
10.1007/s11225-020-09921-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
I show that the lattice of the positive integers ordered by division is characteristic for Urquhart's positive semilattice relevance logic; that is, a formula is valid in positive semilattice relevance logic if and only if it is valid in all models over the positive integers ordered by division. I show that the same frame is characteristic for positive intuitionistic logic, where the class of models over it is restricted to those satisfying a heredity condition. The results of this article highlight deep connections between intuitionistic and semilattice relevance logic.
引用
收藏
页码:687 / 699
页数:13
相关论文
共 17 条
  • [1] Alan Anderson, 1992, ENTAILMENT LOGIC REL
  • [2] Alan Anderson, 1975, ENTAILMENT LOGIC REL
  • [3] [Anonymous], 2014, J PHILOS LOGIC, V43, P549, DOI [10.1007/s10992-013-9281-7, DOI 10.1007/S10992-013-9281-7]
  • [4] AN AXIOMATIC VERSION OF POSITIVE SEMI-LATTICE RELEVANCE LOGIC
    CHARLWOOD, G
    [J]. JOURNAL OF SYMBOLIC LOGIC, 1981, 46 (02) : 233 - 239
  • [5] DUMMETT M, 1959, J SYMBOLIC LOGIC, V24, P97
  • [6] FINE K, 1976, J SYMBOLIC LOGIC, V41, P560
  • [7] PROOF THEORIES FOR SEMILATTICE LOGICS
    GIAMBRONE, S
    URQUHART, A
    [J]. ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1987, 33 (05): : 433 - 439
  • [8] SOLUTION TO THE P-W PROBLEM
    MARTIN, EP
    MEYER, RK
    [J]. JOURNAL OF SYMBOLIC LOGIC, 1982, 47 (04) : 869 - 887
  • [9] Meyer Robert K., 2001, LOGIC MEANING COMPUT, P191
  • [10] Meyer Robert K R, 1970, Z MATH LOGIK GRUNDLA, V16, P385, DOI [10.1002/malq.19700160703, DOI 10.1002/MALQ.19700160703]