FuseNet: 3D Object Detection Network with Fused Information for Lidar Point Clouds

被引:2
|
作者
Liu, Biao [1 ]
Tian, Bihao [1 ]
Wang, Hengyang [1 ]
Qiao, Junchao [1 ]
Wang, Zhi [2 ]
机构
[1] Beijing Jiaotong Univ, Sch Elect Engn, Beijing 100044, Peoples R China
[2] Beijing Jiaotong Univ, Sch Sci, Beijing 100044, Peoples R China
基金
北京市自然科学基金;
关键词
Computer vision; Point cloud; Neural networks; Object detection; Voxelization;
D O I
10.1007/s11063-022-10848-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3D object detection from lidar point cloud has an important role in the environment sensing system of autonomous driving vehicles. In this paper, we propose two modules for object detection works by more detailed voxel initial information extraction and full fusion of context information. Additionally, we extract density information as the initial feature of the voxels and fully confuse the coordinate and density information with a point-based method to reduce the loss of original data caused by voxelization. Second, we extract the voxel features with a backbone neural network based on 3D sparse convolution. We propose a Cross-connected Region Proposal Network to integrate multiscale and multidepth regional features and to obtain high-quality 3D proposal regions. In addition, we extend the target generation strategy in the anchor-based 3D object detection algorithm, which stabilizes the network performance for multiple objections. Our modules can be flexibly applied to state-of-the-art models and effectively improves the network performance, which proves the effectiveness of the modules that we proposed.
引用
收藏
页码:5063 / 5078
页数:16
相关论文
共 50 条
  • [1] FuseNet: 3D Object Detection Network with Fused Information for Lidar Point Clouds
    Biao Liu
    Bihao Tian
    Hengyang Wang
    Junchao Qiao
    Zhi Wang
    Neural Processing Letters, 2022, 54 : 5063 - 5078
  • [2] 3D MSSD: A multilayer spatial structure 3D object detection network for mobile LiDAR point clouds
    Wang, Zongyue
    Xia, Qiming
    Du, Jing
    Huang, Shangfeng
    Su, Jinhe
    Marcato Junior, Jose
    Li, Jonathan
    Cai, Guorong
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 102
  • [3] Relation Graph Network for 3D Object Detection in Point Clouds
    Feng, Mingtao
    Gilani, Syed Zulqarnain
    Wang, Yaonan
    Zhang, Liang
    Mian, Ajmal
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 92 - 107
  • [4] SIEV-Net: A Structure-Information Enhanced Voxel Network for 3D Object Detection From LiDAR Point Clouds
    Yu, Chuanbo
    Lei, Jianjun
    Peng, Bo
    Shen, Haifeng
    Huang, Qingming
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [5] LSNet: Learned Sampling Network for 3D Object Detection from Point Clouds
    Wang, Mingming
    Chen, Qingkui
    Fu, Zhibing
    REMOTE SENSING, 2022, 14 (07)
  • [6] GRNet: Geometric relation network for 3D object detection from point clouds
    Li, Ying
    Ma, Lingfei
    Tan, Weikai
    Sun, Chen
    Cao, Dongpu
    Li, Jonathan
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 165 : 43 - 53
  • [7] Language guided 3D object detection in point clouds for MEP scenes
    Li, Junjie
    Du, Shengli
    Liu, Jianfeng
    Chen, Weibiao
    Tang, Manfu
    Zheng, Lei
    Wang, Lianfa
    Ji, Chunle
    Yu, Xiao
    Yu, Wanli
    IET COMPUTER VISION, 2024, 18 (04) : 526 - 539
  • [8] 3D Cascade RCNN: High Quality Object Detection in Point Clouds
    Cai, Qi
    Pan, Yingwei
    Yao, Ting
    Mei, Tao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 5706 - 5719
  • [9] RoIFusion: 3D Object Detection From LiDAR and Vision
    Chen, Can
    Fragonara, Luca Zanotti
    Tsourdos, Antonios
    IEEE ACCESS, 2021, 9 (09): : 51710 - 51721
  • [10] 3D-CenterNet: 3D object detection network for point clouds with center estimation priority *
    Wang, Qi
    Chen, Jian
    Deng, Jianqiang
    Zhang, Xinfang
    PATTERN RECOGNITION, 2021, 115