Cascading microalgae biorefinery: Fast pyrolysis of Dunaliella tertiolecta lipid extracted-residue

被引:69
作者
Francavilla, M. [1 ,3 ]
Kamaterou, P. [2 ]
Intini, S. [1 ,3 ]
Monteleone, M. [1 ]
Zabaniotou, A. [1 ,2 ]
机构
[1] Univ Foggia, STAR AgroEnergy Res Grp, Foggia, Italy
[2] Aristotle Univ Thessaloniki, Dept Chem Engn, Biomass Grp, Thessaloniki, Greece
[3] CNR, Inst Marine Sci, Lesina, Italy
来源
ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS | 2015年 / 11卷
关键词
Microalgae; Dunaliella tertiolecta; Biorefinery; Lipids; Pyrolysis; Biooil; Soil amendment; BIO-OIL; BIOCHAR; PHYTOSTEROLS; LIQUEFACTION; BIOFUELS; MARINE;
D O I
10.1016/j.algal.2015.06.017
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The present study aims to valorise, through fast pyrolysis, the solid residue of microalga Dunaliella tertiolecta, after extraction of added-value compounds (beta-carotene, phytosterols and fatty acids), which are included in the total lipid fraction, following the "Biorefinery Approach". This study targets biooil and/or char as pyrolysis end-products. At pyrolysis temperature of 600 degrees C, biooil yield was maximized (45.13 wt.%), while char reached 29.34 wt.%. Biooil quality was assessed and its potential use as biofuel discussed. In addition, assessment of char composition and properties, either as fertilizer or sorbent for soil remediation, was also discussed. Finally, microalga D. tertiolecta can produce high amounts of lipids which have a high potential application and also renewable fuel/soil amendment by fast pyrolysis of its residue. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:184 / 193
页数:10
相关论文
共 40 条
  • [1] Biochar as a sorbent for contaminant management in soil and water: A review
    Ahmad, Mahtab
    Rajapaksha, Anushka Upamali
    Lim, Jung Eun
    Zhang, Ming
    Bolan, Nanthi
    Mohan, Dinesh
    Vithanage, Meththika
    Lee, Sang Soo
    Ok, Yong Sik
    [J]. CHEMOSPHERE, 2014, 99 : 19 - 33
  • [2] [Anonymous], WIRES ENERGY ENV
  • [3] [Anonymous], END OIL IMPORTS ENG
  • [4] A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils
    Beesley, Luke
    Moreno-Jimenez, Eduardo
    Gomez-Eyles, Jose L.
    Harris, Eva
    Robinson, Brett
    Sizmur, Tom
    [J]. ENVIRONMENTAL POLLUTION, 2011, 159 (12) : 3269 - 3282
  • [5] Algal biochar - production and properties
    Bird, Michael I.
    Wurster, Christopher M.
    Silva, Pedro H. de Paula
    Bass, Adrian M.
    de Nys, Rocky
    [J]. BIORESOURCE TECHNOLOGY, 2011, 102 (02) : 1886 - 1891
  • [6] The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species
    Borowitzka, Michael A.
    Siva, Christopher J.
    [J]. JOURNAL OF APPLIED PHYCOLOGY, 2007, 19 (05) : 567 - 590
  • [7] Criteria to Select Biochars for Field Studies based on Biochar Chemical Properties
    Brewer, Catherine E.
    Unger, Rachel
    Schmidt-Rohr, Klaus
    Brown, Robert C.
    [J]. BIOENERGY RESEARCH, 2011, 4 (04) : 312 - 323
  • [8] Characterization of Biochar from Fast Pyrolysis and Gasification Systems
    Brewer, Catherine E.
    Schmidt-Rohr, Klaus
    Satrio, Justinus A.
    Brown, Robert C.
    [J]. ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2009, 28 (03) : 386 - 396
  • [9] A mixture of phytosterols from Dunaliella tertiolecta affects proliferation of peripheral blood mononuclear cells and cytokine production in sheep
    Caroprese, Mariangela
    Albenzio, Marzia
    Ciliberti, Maria Giovanna
    Francavilla, Matteo
    Sevi, Agostino
    [J]. VETERINARY IMMUNOLOGY AND IMMUNOPATHOLOGY, 2012, 150 (1-2) : 27 - 35
  • [10] Study of bio-oil and bio-char production from algae by slow pyrolysis
    Chaiwong, K.
    Kiatsiriroat, T.
    Vorayos, N.
    Thararax, C.
    [J]. BIOMASS & BIOENERGY, 2013, 56 : 600 - 606