Mechanical relation between crustal rheology, effective fault friction, and strike-slip partitioning among the Xiaojiang fault system, southeastern Tibet

被引:25
作者
He, Jiankun [1 ]
Lu, Shuangjiang [1 ]
Wang, Xinguo [1 ]
机构
[1] Chinese Acad Sci, Inst Tibetan Plateau Res, Beijing 100101, Peoples R China
关键词
Slip partitioning; Effective fault friction; Viscous lower crust; Mechanical modeling; Xiaojiang fault system; INDIA-ASIA COLLISION; SAN-ANDREAS FAULT; ACTIVE DEFORMATION; LATERAL VARIATIONS; LARGE EARTHQUAKES; XIANSHUIHE FAULT; YUNNAN PROVINCE; UPPER-MANTLE; HEAT-FLOW; CHINA;
D O I
10.1016/j.jseaes.2008.06.003
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The north-south trending Xiaojiang fault system accommodates similar to 10-12 mm/yr sinistral motions between southeastern Tibet and south China. In the south segment, the fault system composes mainly of four parallel strike-slip faults, namely from west to east, the Luzhijiang fault, the Yimen fault, the Puduhe fault, and the Xiaojiang fault. Geological and Seismological observations have shown that these strike-slip faults are all of active, while the slip rates of the Luzhijiang, the Yimen, and the Puduhe faults are much less than that of the Xiaojiang fault. We use finite element modeling to explore the mechanical relation between crustal rheology, effective fault friction and long-term slip rate partitioning among the four parallel faults. The individual faults are simplified as vertical discontinuities embedded in the crust as geophysical explorations have predicted. A large number of models are tested, associating with variations of the crustal rheolohy and the effective fault friction of individual faults. Result shows that if crust bounding the faults trends to behave like rigid blocks and decoupled mechanically from underlying layer, the modeled result is hard to approximate slip rates of the individual faults. To better fit slip rates of the individual faults, viscous deformation of the lower crust should be included. With a heterogeneously viscous lower-crust model that is built upon thermal structure of the heat flow data, associating with relatively low effective friction of the Xiaojiang fault, the modeled results fit the geological slip rates well, with similar to 1-1.5 mm/yr for the Luzhijiang, the Yimen and the Puduhe faults, and similar to 6-6.5 mm/yr for the Xiaojiang fault. Thus, in the southward movement of the Tibetan plateau around the eastern Himalayan syntaxis, slip partitioning among the Xiaojiang fault system should be related to viscous deformation of the lower crust associated with different strength of the individual faults, highlighting that deformation of this fault system is coupled mechanically between the frictional upper crust and the viscous lower crust. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:363 / 375
页数:13
相关论文
共 68 条
[1]  
ALLEN CR, 1984, GEOL SOC AM BULL, V95, P686, DOI 10.1130/0016-7606(1984)95<686:RRAAFY>2.0.CO
[2]  
2
[3]  
ALLEN CR, 1991, GEOL SOC AM BULL, V103, P1178, DOI 10.1130/0016-7606(1991)103<1178:FSOAHA>2.3.CO
[4]  
2
[5]   KINEMATIC MODEL OF ACTIVE DEFORMATION IN CENTRAL-ASIA [J].
AVOUAC, JP ;
TAPPONNIER, P .
GEOPHYSICAL RESEARCH LETTERS, 1993, 20 (10) :895-898
[6]  
BIRD P, 1994, GEOL SOC AM BULL, V106, P159, DOI 10.1130/0016-7606(1994)106<0159:CSOCTC>2.3.CO
[7]  
2
[8]   Northwest-trending, middle Cenozoic, left-lateral faults in southern Yunnan, China, and their tectonic significance [J].
Burchfiel, BC ;
Wang, EC .
JOURNAL OF STRUCTURAL GEOLOGY, 2003, 25 (05) :781-792
[9]   An integrated mechanical model of the San Andreas fault in central and northern California [J].
Chéry, J ;
Zoback, MD ;
Hassani, R .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2001, 106 (B10) :22051-22066
[10]   Dynamic topography produced by lower crustal flow against rheological strength heterogeneities bordering the Tibetan Plateau [J].
Clark, MK ;
Bush, JWM ;
Royden, LH .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2005, 162 (02) :575-590