Recent progress in grating-based microscopic X-ray phase tomography

被引:2
作者
Momose, Atsushi [1 ]
Ueda, Ryosuke [1 ]
Cai, Mingjian [1 ,2 ]
Zhao, Zhuoxuan [1 ,2 ]
Kalirai, Sam [3 ]
Stan, Maderych [3 ]
Irwin, Jeff [3 ]
Kawakami, Hiroki [4 ]
Zangi, Pouria [5 ]
Meyer, Pascal [5 ,6 ]
Boerner, Martin [5 ,6 ]
Schulz, Joachim [7 ]
机构
[1] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
[2] Tohoku Univ, Grad Sch Engn, Dept Mat Sci, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
[3] Carl Zeiss Xray Microscopy Inc, Pleasanton, CA 97588 USA
[4] Hamamatsu Photon KK, Electron Tube Div, 314-5 Shimokanzo, Shizuoka 4380193, Japan
[5] Karlsruhe Inst Technol, Inst Microstruct Technol, Hermann von HelmholtzPl 1, D-76344 Eggenstein Leopoldshafen, Germany
[6] Karlsruhe Nano Micro Facil, Hermann von HelmholtzPl 1, D-76344 Eggenstein Leopoldshafen, Germany
[7] Microworks GmbH, Schnetzlerstr 9, D-76137 Karlsruhe, Germany
来源
DEVELOPMENTS IN X-RAY TOMOGRAPHY XIV | 2022年 / 12242卷
基金
日本科学技术振兴机构;
关键词
grating; interferometry; phase tomography; X-ray microscopy; spatial resolution; super-resolution; COMPUTED-TOMOGRAPHY; CONTRAST;
D O I
10.1117/12.2636393
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
X-ray phase imaging with grating interferometers, such as the Talbot interferometer, is widely performed even with a laboratory X-ray source. However, the achievable spatial resolution is normally limited by the period of gratings. In this work, two laboratory-based apparatuses are developed to overcome the constraint of the spatial resolution. One is the combination of a commercially available FZP-based X-ray imaging microscope and Lau interferometer optics. The two-step deconvolution approach is explained to attain phase tomography. The other is a sub-period super-resolution X-ray phase imaging, which is based on the sample-scanning scheme across the beamlet array formed by a triangular phase grating. A proof-of-concept result of the super-resolution approach is presented.
引用
收藏
页数:10
相关论文
共 44 条
[1]   X-ray microtomography (mu CT) using phase contrast for the investigation of organic matter [J].
Beckmann, F ;
Bonse, U ;
Busch, F ;
Gunnewig, O .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1997, 21 (04) :539-553
[2]   X-ray phase-contrast imaging: from pre-clinical applications towards clinics [J].
Bravin, Alberto ;
Coan, Paola ;
Suortti, Pekka .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (01) :R1-R35
[3]   Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays [J].
Cloetens, P ;
Ludwig, W ;
Baruchel, J ;
Van Dyck, D ;
Van Landuyt, J ;
Guigay, JP ;
Schlenker, M .
APPLIED PHYSICS LETTERS, 1999, 75 (19) :2912-2914
[4]  
Eaton WJ, 2000, AIP CONF PROC, V507, P452, DOI 10.1063/1.1291189
[5]   High-resolution differential phase contrast imaging using a magnifying projection geometry with a microfocus x-ray source [J].
Engelhardt, Martin ;
Baumann, Joachim ;
Schuster, Manfred ;
Kottler, Christian ;
Pfeiffer, Franz ;
Bunk, Oliver ;
David, Christian .
APPLIED PHYSICS LETTERS, 2007, 90 (22)
[6]   Three-dimensional optical laser lithography beyond the diffraction limit [J].
Fischer, Joachim ;
Wegener, Martin .
LASER & PHOTONICS REVIEWS, 2013, 7 (01) :22-44
[7]   Phase-sensitive x-ray imaging [J].
Fitzgerald, R .
PHYSICS TODAY, 2000, 53 (07) :23-26
[8]  
GERCHBERG RW, 1972, OPTIK, V35, P237
[9]   Full-field structured-illumination super-resolution X-ray transmission microscopy [J].
Guenther, Benedikt ;
Hehn, Lorenz ;
Jud, Christoph ;
Hipp, Alexander ;
Dierolf, Martin ;
Pfeiffer, Franz .
NATURE COMMUNICATIONS, 2019, 10 (1)
[10]  
Gusenbauer C., 2016, CASE STUD NONDESTRUC, V6, P30, DOI [10.1016/j.csndt.2016.02.001, DOI 10.1016/J.CSNDT.2016.02.001]