Higher dimensional abelian Chern-Simons theories and their link invariants

被引:9
作者
Gallot, L. [1 ]
Pilon, E. [1 ]
Thuillier, F. [1 ]
机构
[1] Univ Savoie, LAPTH, CNRS, F-74941 Annecy Le Vieux, France
关键词
DIFFERENTIAL CHARACTERS; SELF-LINKING; BRAID;
D O I
10.1063/1.4791677
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The role played by Deligne-Beilinson cohomology in establishing the relation between Chern-Simons theory and link invariants in dimensions higher than three is investigated. Deligne-Beilinson cohomology classes provide a natural abelian Chern-Simons action, non trivial only in dimensions 4l + 3, whose parameter k is quantized. The generalized Wilson (2l + 1)-loops are observables of the theory and their charges are quantized. The Chern-Simons action is then used to compute invariants for links of (2l + 1)-loops, first on closed (4l + 3)-manifolds through a novel geometric computation, then on R4l+3 through an unconventional field theoretic computation. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4791677]
引用
收藏
页数:27
相关论文
共 35 条
[1]  
Barnett S., 1990, MATRICES METHODS APP, P248
[2]  
Bauer M, 2005, J HIGH ENERGY PHYS
[3]  
Beilinson AA., 1985, J. Soviet Math., V30, P2036, DOI 10.1007/BF02105861
[4]  
Bott R., 1982, GRAD TEXTS MATH
[5]  
Brylinski JL., 1993, LOOP SPACES
[6]  
Calugareanu G., 1959, REV MATH PURE APPL, V4, P5
[7]  
CHEEGER J, 1985, LECT NOTES MATH, V1167, P50
[8]  
De Turck D., ARXIV10093561MATHGT
[9]  
Deligne P., 1971, PUBL MATH-PARIS, V40, P5, DOI 10.1007/BF02684692
[10]   TOPOLOGICALLY MASSIVE GAUGE-THEORIES [J].
DESER, S ;
JACKIW, R ;
TEMPLETON, S .
ANNALS OF PHYSICS, 1982, 140 (02) :372-411