Enhancement in solar hydrogen generation efficiency using a GaN-based nanorod structure

被引:49
作者
Benton, J. [1 ]
Bai, J. [1 ]
Wang, T. [1 ]
机构
[1] Univ Sheffield, Dept Elect & Elect Engn, Sheffield S1 3JD, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1063/1.4803926
中图分类号
O59 [应用物理学];
学科分类号
摘要
A significant enhancement in solar hydrogen generation has been achieved using a GaN-based nanorod array structure as a photoelectrode in comparison with a planar one fabricated from the same parent wafer. The nanorod array structure was formed by dry etching using a self-organised nickel nanomask. Under identical illumination conditions in hydrochloric acid solution, the photoelectrode with the nanorod array structure has demonstrated a photocurrent enhancement with a factor of 6 and an enhancement in the rate of hydrogen generation with a factor of 7. The enhancement in solar hydrogen generation is attributed to a massive improvement in light absorption area, reduced travelling distance for the migration of the photogenerated carriers to the semiconductor/electrolyte interface, and surface band bending. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 14 条
[1]   Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells [J].
Aryal, K. ;
Pantha, B. N. ;
Li, J. ;
Lin, J. Y. ;
Jiang, H. X. .
APPLIED PHYSICS LETTERS, 2010, 96 (05)
[2]   Greatly enhanced performance of InGaN/GaN nanorod light emitting diodes [J].
Bai, J. ;
Wang, Q. ;
Wang, T. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2012, 209 (03) :477-480
[3]   Ultrahigh photocurrent gain in m-axial GaN nanowires [J].
Chen, Reui-San ;
Chen, Hsin-Yi ;
Lu, Chien-Yao ;
Chen, Kuei-Hsien ;
Chen, Chin-Pei ;
Chen, Li-Chyong ;
Yang, Ying-Jay .
APPLIED PHYSICS LETTERS, 2007, 91 (22)
[4]   Bias-assisted H2 gas generation in HCl and KOH solutions using n-type GaN photoelectrode [J].
Fujii, K ;
Ohkawa, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (03) :A468-A471
[5]  
Kumukura K., 2005, APPL PHYS LETT, V86
[6]   Remarkable enhancement in photocurrent of In0.20Ga0.80N photoanode by using an electrochemical surface treatment [J].
Li, Mingxue ;
Luo, Wenjun ;
Liu, Bin ;
Zhao, Xin ;
Li, Zhaosheng ;
Chen, Dunjun ;
Yu, Tao ;
Xie, Zili ;
Zhang, Rong ;
Zou, Zhigang .
APPLIED PHYSICS LETTERS, 2011, 99 (11)
[7]   Growth by molecular beam epitaxy of amorphous and crystalline GaNAs alloys with band gaps from 3.4 to 0.8 eV for solar energy conversion devices [J].
Novikov, S. V. ;
Staddon, C. R. ;
Foxon, C. T. ;
Yu, K. M. ;
Broesler, R. ;
Hawkridge, M. ;
Liliental-Weber, Z. ;
Denlinger, J. ;
Demchenko, I. ;
Luckert, F. ;
Edwards, P. R. ;
Martin, R. W. ;
Walukiewicz, W. .
JOURNAL OF CRYSTAL GROWTH, 2011, 323 (01) :60-63
[8]   Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN [J].
Ono, Masato ;
Fujii, Katsushi ;
Ito, Takashi ;
Iwaki, Yasuhiro ;
Hirako, Akira ;
Yao, Takafumi ;
Ohkawa, Kazuhiro .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (05)
[9]   Direct water photoelectrolysis with patterned n-GaN [J].
Waki, Ichitaro ;
Cohen, Daniel ;
Lal, Rakesh ;
Mishra, Umesh ;
DenBaars, Steven P. ;
Nakamura, Shuji .
APPLIED PHYSICS LETTERS, 2007, 91 (09)
[10]   Wafer-Level Photocatalytic Water Splitting on GaN Nanowire Arrays Grown by Molecular Beam Epitaxy [J].
Wang, Defa ;
Pierre, Adrien ;
Kibria, Md Golam ;
Cui, Kai ;
Han, Xueguang ;
Bevan, Kirk H. ;
Guo, Hong ;
Paradis, Suzanne ;
Hakima, Abou-Rachid ;
Mi, Zetian .
NANO LETTERS, 2011, 11 (06) :2353-2357