On the non-existence of tight Gaussian 6-designs on two concentric spheres

被引:0
作者
Hou, Bo [1 ]
Shen, Panpan [1 ]
Zhang, Ran [1 ]
Gao, Suogang [1 ]
机构
[1] Hebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050024, Peoples R China
关键词
Gaussian t-designs; Spherical t-designs; Euclidean t-designs; CUBATURE FORMULAS; 4-DESIGNS; THEOREM;
D O I
10.1016/j.disc.2013.01.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Gaussian t-design is defined as a finite set X in the Euclidean space R-n satisfying the condition: 1/V(R-n) integral(Rn) f(x)e(-alpha 2 parallel to x parallel to 2) dx = Sigma(x is an element of chi) omega(X)f(X) for any polynomial f(x) in n variables of degree at most t, where alpha is a constant real number and omega is a positive weight function on X. It is well known that if X is a Gaussian 2e-design in R-n, then vertical bar X vertical bar >= ((n+e)(e)). We call X a tight Gaussian 2e-design in R-n if vertical bar X vertical bar = ((n+e)(e)). In this paper, we prove that there exists no tight Gaussian 6-design supported by two concentric spheres in R-n for n >= 2. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1002 / 1010
页数:9
相关论文
共 16 条
[1]  
[Anonymous], 1971, APPROXIMATE CALCULAT
[2]  
[Anonymous], NEDERL AKAD WETENSCH
[3]   Tight Gaussian 4-designs [J].
Bannai, E ;
Bannai, E .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2005, 22 (01) :39-63
[4]   On Euclidean tight 4-designs [J].
Bannai, Eiichi ;
Bannai, Etsuko .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2006, 58 (03) :775-804
[5]  
Bannai E, 2012, J ALGEBR COMB, V35, P109, DOI 10.1007/s10801-011-0295-3
[6]   Tight 9-designs on two concentric spheres [J].
Bannai, Eiichi ;
Bannai, Etsuko .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2011, 63 (04) :1359-1376
[7]   Cubature formulas in numerical analysis and Euclidean tight designs [J].
Bannai, Eiichi ;
Bannai, Etsuko ;
Hirao, Masatake ;
Sawa, Masanori .
EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (02) :423-441
[8]   A survey on spherical designs and algebraic combinatorics on spheres [J].
Bannai, Eiichi ;
Bannai, Etsuko .
EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (06) :1392-1425
[9]   On antipodal Euclidean tight (2e+1)-designs [J].
Bannai, Etsuko .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2006, 24 (04) :391-414
[10]  
COOLS R, 1993, INT S NUM M, V112, P57