REGULARIZING NONLINEAR SCHRODINGER EQUATIONS THROUGH PARTIAL OFF-AXIS VARIATIONS

被引:6
作者
Antonelli, Paolo [1 ]
Arbunich, Jack [2 ]
Sparber, Christof [2 ]
机构
[1] Gran Sasso Sci Inst, Laquila, Italy
[2] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
关键词
nonlinear Schrodinger equation; partial off-axis variation; Strichartz estimates; dispersion; finite-time blow-up; BBM equation; BLOW-UP;
D O I
10.1137/17M1131313
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a class of focusing nonlinear Schrodinger-type equations derived recently by Dumas, Lannes, and Szeftel within the mathematical description of high intensity laser beams. These equations incorporate the possibility of a (partial) off-axis variation of the group velocity of such laser beams through a second order partial differential operator acting in some, but not necessarily all, spatial directions. We investigate the initial value problem for such models and obtain global well-posedness in L-2-supercritical situations, even in the case of only partial off-axis dependence. This provides an answer to an open problem posed by Dumas, Lannes, and Szeftel.
引用
收藏
页码:110 / 130
页数:21
相关论文
共 20 条
[11]   Endpoint Strichartz estimates [J].
Keel, M ;
Tao, T .
AMERICAN JOURNAL OF MATHEMATICS, 1998, 120 (05) :955-980
[12]   Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrodinger equation in the radial case [J].
Kenig, Carlos E. ;
Merle, Frank .
INVENTIONES MATHEMATICAE, 2006, 166 (03) :645-675
[13]   On a sharp lower bound on the blow-up rate for the L2 critical nonlinear Schrodinger equation [J].
Merle, F ;
Raphael, P .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 19 (01) :37-90
[14]   Profiles and quantization of the blow up mass for critical nonlinear Schrodinger equation [J].
Merle, F ;
Raphael, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 253 (03) :675-704
[15]   On universality of blow-up profile for L2 critical nonlinear Schrodinger equation [J].
Merle, F ;
Raphael, P .
INVENTIONES MATHEMATICAE, 2004, 156 (03) :565-672
[17]   SPACE-TIME FOCUSING - BREAKDOWN OF THE SLOWLY VARYING ENVELOPE APPROXIMATION IN THE SELF-FOCUSING OF FEMTOSECOND PULSES [J].
ROTHENBERG, JE .
OPTICS LETTERS, 1992, 17 (19) :1340-1342
[18]  
Stein E M., 1971, Introduction to Fourier Analysis on Euclidean Spaces
[19]  
Stein Elias M., 1956, T AM MATH SOC, V83, P482, DOI 10.2307/1992885
[20]  
Sulem C., 1999, NONLINEAR SCHRODINGE