An Enhanced Swarm Intelligence Clustering-Based RBF Neural Network Detection Classifier

被引:0
作者
Feng, Yong [1 ]
Wu, Zhong-fu [1 ]
Zhong, Jiang [1 ]
Ye, Chun-xiao [1 ]
Wu, Kai-gui [1 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing 400030, Peoples R China
来源
ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, PROCEEDINGS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE | 2008年 / 5227卷
关键词
swarm intelligence; clustering; radial basis function neural network; intrusion detection; classifier;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The central problem in training a radial basis function neural network (RBFNN) is the selection of hidden layer neurons, which includes the selection of the center and width of those neurons. In this paper, we propose an enhanced swarm intelligence clustering (ESIC) method to select hidden layer neurons, and then, training a cosine RBFNN base on gradient descent learning process. Also, the new method is applied for intrusion detection. Experimental results show that the average DR and FPR of our ESIC-based RBFNN detection classifier maintained a better performance than BP, SVM and OLS RBF.
引用
收藏
页码:526 / 533
页数:8
相关论文
共 5 条
  • [1] Feng Y, 2007, LECT NOTES COMPUT SC, V4492, P947
  • [2] Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation
    González, J
    Rojas, I
    Ortega, J
    Pomares, H
    Fernández, J
    Díaz, AF
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (06): : 1478 - 1495
  • [3] An improved ant colony algorithm for fuzzy clustering in image segmentation
    Han, Yanfang
    Shi, Pengfei
    [J]. NEUROCOMPUTING, 2007, 70 (4-6) : 665 - 671
  • [4] Neuron selection for RBF neural network classifier based on data structure preserving criterion
    Mao, KZ
    Huang, GB
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2005, 16 (06): : 1531 - 1540
  • [5] Ant colony optimization of clustering models
    Runkler, TA
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2005, 20 (12) : 1233 - 1251