Nonlinear dynamics of Bose-condensed gases by means of a q-Gaussian variational approach

被引:22
作者
Nicolin, Alexandru I. [1 ]
Carretero-Gonzalez, R. [2 ,3 ]
机构
[1] Niels Bohr Inst, DK-2100 Copenhagen, Denmark
[2] Computat Sci Res Inst, Nonlinear Dynam Syst Grp, Berkeley, CA USA
[3] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
关键词
D O I
10.1016/j.physa.2008.06.055
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a versatile variational method to investigate the spatio-temporal dynamics of one-dimensional magnetically-trapped Bose-condensed gases. To this end we employ a q-Gaussian trial wave-function that describes both the low- and the high-density limit of the ground state of a Bose-condensed gas. Unlike previous analytical models, we do not approximate the dynamics of the condensate as a dynamical rescaling of the initial density profile. Instead, we allow the shape of the condensate's density profile to change in time. Our main result consists of reducing the Gross-Pitaevskii equation, a nonlinear partial differential equation describing the T = 0 dynamics of the condensate, to a set of only three equations: two coupled nonlinear ordinary differential equations describing the phase and the curvature of the wave-function and a separate algebraic equation yielding the generalized width. Our equations recover those of the usual Gaussian variational approach (in the low-density regime), and the hydrodynamic equations that describe the high-density regime. Finally, we show a detailed comparison between the numerical results of our equations and those of the original Gross-Pitaevskii equation. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:6032 / 6044
页数:13
相关论文
共 41 条
[1]   Bright soliton trains of trapped Bose-Einstein condensates [J].
Al Khawaja, U ;
Stoof, HTC ;
Hulet, RG ;
Strecker, KE ;
Partridge, GB .
PHYSICAL REVIEW LETTERS, 2002, 89 (20)
[2]   Unified semiclassical approximation for Bose-Einstein condensates: Application to a BEC in an optical potential [J].
Band, YB ;
Towers, I ;
Malomed, BA .
PHYSICAL REVIEW A, 2003, 67 (02) :11
[3]   Dark solitons in Bose-Einstein condensates [J].
Burger, S ;
Bongs, K ;
Dettmer, S ;
Ertmer, W ;
Sengstock, K ;
Sanpera, A ;
Shlyapnikov, GV ;
Lewenstein, M .
PHYSICAL REVIEW LETTERS, 1999, 83 (25) :5198-5201
[4]   FINITE-DIMENSIONAL DESCRIPTION OF NONLINEAR PULSE-PROPAGATION IN OPTICAL-FIBER COUPLERS WITH APPLICATIONS TO SOLITON SWITCHING [J].
CAGLIOTI, E ;
TRILLO, S ;
WABNITZ, S ;
CROSIGNANI, B ;
DIPORTO, P .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1990, 7 (03) :374-385
[5]  
CARRETEROGONZAL.R, 2008, NONLINEARIT IN PRESS
[6]  
CASTIN Y, 1996, PHYS REV LETT, V77, P5135
[7]   Propagation and stability of optical pulses in a diffractive dispersive non-linear medium [J].
Crosignani, B. ;
Di Porto, P. ;
Piazzolla, S. .
Pure and applied optics, 1992, 1 (01) :7-12
[8]   Nonlinear dynamics of a Bose condensed gas [J].
Dalfovo, F ;
Minniti, C ;
Stringari, S ;
Pitaevskii, L .
PHYSICS LETTERS A, 1997, 227 (3-4) :259-264
[9]   Generating solitons by phase engineering of a Bose-Einstein condensate [J].
Denschlag, J ;
Simsarian, JE ;
Feder, DL ;
Clark, CW ;
Collins, LA ;
Cubizolles, J ;
Deng, L ;
Hagley, EW ;
Helmerson, K ;
Reinhardt, WP ;
Rolston, SL ;
Schneider, BI ;
Phillips, WD .
SCIENCE, 2000, 287 (5450) :97-101
[10]   VARIATIONAL APPROACH TO COLLAPSE OF OPTICAL PULSES [J].
DESAIX, M ;
ANDERSON, D ;
LISAK, M .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1991, 8 (10) :2082-2086