Stabilization and disturbance rejection for the beam equation

被引:36
作者
Morgül, Ö [1 ]
机构
[1] Bilkent Univ, Dept Elect & Elect Engn, TR-06533 Ankara, Turkey
关键词
boundary control systems; distributed parameter systems; disturbance rejection; flexible structures; semigroup theory; stability;
D O I
10.1109/9.975475
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a system described by the Euler-Bernoulli beam equation. For stabilization, we propose a dynamic boundary controller applied at the free end of the system. The transfer function of the controller is a marginally stable positive real function which may contain poles on the imaginary axis. We then give various asymptotical and exponential stability results. We also consider the disturbance rejection problem.
引用
收藏
页码:1913 / 1918
页数:6
相关论文
共 20 条
[1]  
[Anonymous], 1981, SEMIDYNAMICAL SYSTEM
[2]  
Bontsema J., 1988, Proceedings of the 27th IEEE Conference on Decision and Control (IEEE Cat. No.88CH2531-2), P1647, DOI 10.1109/CDC.1988.194607
[3]  
CHEN G, 1979, J MATH PURE APPL, V58, P249
[4]   MODELING, STABILIZATION AND CONTROL OF SERIALLY CONNECTED BEAMS [J].
CHEN, G ;
DELFOUR, MC ;
KRALL, AM ;
PAYRE, G .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1987, 25 (03) :526-546
[5]  
Chen G., 1987, Operator Methods for Optimal Control Problems, P67
[6]  
Gohberg I, 1990, Classes of Linear Operators, VI
[7]  
Huang FL., 1985, Ann. Differ. Equ, V1, P43
[8]   On a class of marginally stable positive real systems [J].
Joshi, SM ;
Gupta, S .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (01) :152-155
[9]  
Kato T., 1980, PERTURBATION THEORY
[10]   DECAY OF SOLUTIONS OF WAVE-EQUATIONS IN A BOUNDED REGION WITH BOUNDARY DISSIPATION [J].
LAGNESE, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1983, 50 (02) :163-182