Highly Active and Stable Single-Atom Cu Catalysts Supported by a Metal-Organic Framework

被引:446
作者
Abdel-Mageed, Ali M. [1 ]
Rungtaweevoranit, Bunyarat [2 ,3 ,4 ]
Parlinska-Wojtan, Magdalena [5 ]
Pei, Xiaokun [2 ,3 ,4 ]
Yaghi, Omar M. [2 ,3 ,4 ]
Behm, R. Juergen [1 ]
机构
[1] Ulm Univ, Inst Surface Chem & Catalysis, D-89069 Ulm, Germany
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[5] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland
关键词
CO OXIDATION; H-2-RICH GAS; HYDROGENATION; XAFS; FTIR; SPECTROSCOPY; SELECTIVITY; ADSORPTION; KINETICS; CU-ZSM-5;
D O I
10.1021/jacs.8b11386
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Single-atom catalysts are often considered as the ultimate design principle for supported catalysts, due to their unique geometric and electronic properties and their highly efficient use of precious materials. Here, we report a single-atom catalyst, Cu/UiO-66, prepared by a covalent attachment of Cu atoms to the defect sites at the zirconium oxide clusters of the metal-organic framework (MOF) UiO-66. Kinetic measurements show this catalyst to be highly active and stable under realistic reaction conditions for two important test reactions, the oxidation of CO at temperatures up to 350 degrees C, which makes this interesting for application in catalytic converters for cars, and for CO removal via selective oxidation of CO in H-2-rich feed gases, where it shows an excellent selectivity of about 100% for CO oxidation. Time-resolved operando spectroscopy measurements indicate that the activity of the catalyst is associated with atomically dispersed, positively charged ionic Cu species. Density functional theory (DFT) calculations in combination with experimental data show that Cu binds to the MOF by -OH/-OH2 ligands capping the defect sites at the Zr oxide clusters.
引用
收藏
页码:5201 / 5210
页数:10
相关论文
共 50 条
[1]   Confinement of Ultrasmall Cu/ZnOx Nanoparticles in Metal-Organic Frameworks for Selective Methanol Synthesis from Catalytic Hydrogenation of CO2 [J].
An, Bing ;
Zhang, Jingzheng ;
Cheng, Kang ;
Ji, Pengfei ;
Wang, Cheng ;
Lin, Wenbin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (10) :3834-3840
[2]   Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure [J].
Ankudinov, AL ;
Ravel, B ;
Rehr, JJ ;
Conradson, SD .
PHYSICAL REVIEW B, 1998, 58 (12) :7565-7576
[3]   Ionic dispersion of Pt and Pd on CeO2 by combustion method:: Effect of metal-ceria interaction on catalytic activities for NO reduction and CO and hydrocarbon oxidation [J].
Bera, P ;
Patil, KC ;
Jayaram, V ;
Subbanna, GN ;
Hegde, MS .
JOURNAL OF CATALYSIS, 2000, 196 (02) :293-301
[4]   Reactivity of Surface Species in Heterogeneous Catalysts Probed by In Situ X-ray Absorption Techniques [J].
Bordiga, Silvia ;
Groppo, Elena ;
Agostini, Giovanni ;
van Bokhoven, Jeroen A. ;
Lamberti, Carlo .
CHEMICAL REVIEWS, 2013, 113 (03) :1736-1850
[5]   An in situ XAS study of Cu/ZrO2 catalysts under de-NOx reaction conditions [J].
Caballero, A ;
Morales, JJ ;
Cordon, AM ;
Holgado, JP ;
Espinos, JP ;
Gonzalez-Elipe, AR .
JOURNAL OF CATALYSIS, 2005, 235 (02) :295-301
[6]   The effect of size-dependent nanoparticle energetics on catalyst sintering [J].
Campbell, CT ;
Parker, SC ;
Starr, DE .
SCIENCE, 2002, 298 (5594) :811-814
[7]   Orbital reconstruction and covalent bonding at an oxide interface [J].
Chakhalian, J. ;
Freeland, J. W. ;
Habermeier, H.-U. ;
Cristiani, G. ;
Khaliullin, G. ;
van Veenendaal, M. ;
Keimer, B. .
SCIENCE, 2007, 318 (5853) :1114-1117
[8]   Influence of the catalyst loading on the activity and the CO selectivity of supported Ru catalysts in the selective methanation of CO in CO2 containing feed gases [J].
Eckle, Stephan ;
Augustin, Matthias ;
Anfang, Hans-Georg ;
Behm, R. Juergen .
CATALYSIS TODAY, 2012, 181 (01) :40-51
[9]   Catalytic converters: state of the art and perspectives [J].
Farrauto, RJ ;
Heck, RM .
CATALYSIS TODAY, 1999, 51 (3-4) :351-360
[10]   ELECTRONIC-STRUCTURE OF CU2O AND CUO [J].
GHIJSEN, J ;
TJENG, LH ;
VANELP, J ;
ESKES, H ;
WESTERINK, J ;
SAWATZKY, GA ;
CZYZYK, MT .
PHYSICAL REVIEW B, 1988, 38 (16) :11322-11330