Fuzzy control system performance enhancement by iterative learning control

被引:91
作者
Precup, Radu-Emil [1 ]
Preitl, Stefan [1 ]
Tar, Jozsef K. [2 ]
Tomescu, Marius L. [3 ]
Takacs, Marta [2 ]
Korondi, Peter [4 ]
Baranyi, Peter [5 ]
机构
[1] Politehn Univ Timisoara, Dept Automat & Appl Informat, Timisoara 300223, Romania
[2] John von Neumann Fac Informat, Budapest Tech Polytech Inst, Inst Intelligent Engn Syst, H-1034 Budapest, Hungary
[3] Aurel Vlaicu Univ Arad, Dept Comp Sci, Arad 310130, Romania
[4] Budapest Univ Technol & Econ, Dept Automat & Appl Informat, H-1117 Budapest, Hungary
[5] Hungarian Acad Sci, Comp & Automat Res Inst, Cognit Vis Res Grp, H-1111 Budapest, Hungary
关键词
fuzzy control; iterative methods; learning control systems (CSs); servo systems; stability;
D O I
10.1109/TIE.2008.925322
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper suggests low-cost fuzzy control solutions that ensure the improvement of control system (CS) performance indices by merging the benefits of fuzzy control and iterative learning control (ILC). The solutions are expressed in terms of three fuzzy CS (FCS) structures that employ ILC algorithms and a unified design method focused on Takagi-Sugeno proportional-integral fuzzy controllers (PI-FCs). The PI-FCs are dedicated to a class of servo systems with linear/linearized controlled plants characterized by second-order dynamics and integral type. The invariant set theorem by Krasovskii and LaSalle with quadratic Lyapunov function candidates is applied to guarantee the convergence of the ILC algorithms and enable proper setting of the PI-FC parameters. The linear PI controller parameters tuned by the extended symmetrical optimum method are mapped onto the PI-FC ones by the modal equivalence principle. Real-time experimental results for a dc-based servo speed CS are included.
引用
收藏
页码:3461 / 3475
页数:15
相关论文
共 39 条
[1]   Stability analysis and synthesis of multivariable fuzzy systems using interval arithmetic [J].
Andújar, JA ;
Bravo, JM ;
Peregrín, A .
FUZZY SETS AND SYSTEMS, 2004, 148 (03) :337-353
[2]  
[Anonymous], 2007, Foundations of Fuzzy Control
[3]  
[Anonymous], 1959, PROBLEMS THEORY STAB
[4]  
Araki M., 2003, International Journal of Control, Automation, and Systems, V1, P401
[5]  
Astrom K. J., 1995, PID CONTROLLERS THEO
[6]   Optimal two-degree-of-freedom fuzzy control for locomotion control of a hydraulically actuated hexapod robot [J].
Barai, Ranjit Kumar ;
Nonami, Kenzo .
INFORMATION SCIENCES, 2007, 177 (08) :1892-1915
[7]   A survey of iterative learning control [J].
Bristow, Douglas A. ;
Tharayil, Marina ;
Alleyne, Andrew G. .
IEEE CONTROL SYSTEMS MAGAZINE, 2006, 26 (03) :96-114
[8]  
Chien CJ, 2005, IEEE DECIS CONTR P, P7834
[9]   Fuzzy system-based adaptive iterative learning control for nonlinear plants with initial state errors [J].
Chien, CJ ;
Hsu, CT ;
Yao, CY .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2004, 12 (05) :724-732
[10]   Continuous Takagi-Sugeno's models: Reduction of the number of LMI conditions in various fuzzy control design technics [J].
Delmotte, F. ;
Guerra, T. M. ;
Ksantini, M. .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2007, 15 (03) :426-438