Computing the First Eigenpair of the -Laplacian via Inverse Iteration of Sublinear Supersolutions

被引:25
作者
Biezuner, Rodney Josue [1 ]
Brown, Jed [2 ,3 ]
Ercole, Grey [1 ]
Martins, Eder Marinho [4 ]
机构
[1] Univ Fed Minas Gerais, Dept Matemat ICEx, BR-30161970 Belo Horizonte, MG, Brazil
[2] ETH, Lab Hydraul Hydrol & Glaciol VAW, CH-8092 Zurich, Switzerland
[3] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA
[4] Univ Fed Ouro Preto, Dept Matemat ICEB, BR-35400000 Ouro Preto, MG, Brazil
关键词
p-Laplacian; First eigenvalue and eigenfunction; Inverse iteration; Lane-Emden problem; Torsional creep problem; FINITE-ELEMENT-METHOD; P-LAPLACIAN; ELLIPTIC-OPERATORS; POSITIVE SOLUTIONS; APPROXIMATION; EIGENVALUES; COMPUTATION; DIFFUSION; ALGORITHM; EQUATION;
D O I
10.1007/s10915-011-9540-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce an iterative method for computing the first eigenpair ( , ) for the -Laplacian operator with homogeneous Dirichlet data as the limit of ( (,) ) as -> (-), where is the positive solution of the sublinear Lane-Emden equation with the same boundary data. The method is shown to work for any smooth, bounded domain. Solutions to the Lane-Emden problem are obtained through inverse iteration of a super-solution which is derived from the solution to the torsional creep problem. Convergence of to is in the (1)-norm and the rate of convergence of to is at least (-). Numerical evidence is presented.
引用
收藏
页码:180 / 201
页数:22
相关论文
共 45 条
[1]   AN ELEMENTARY PROOF OF THE UNIQUENESS OF POSITIVE RADIAL SOLUTIONS OF A QUASI-LINEAR DIRICHLET PROBLEM [J].
ADIMURTHI ;
YADAVA, SL .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 127 (03) :219-229
[2]   The approximation theory for the p-version finite element method and application to non-linear elliptic PDEs [J].
Ainsworth, M ;
Kay, D .
NUMERISCHE MATHEMATIK, 1999, 82 (03) :351-388
[3]  
Allegretto W, 1998, NONLINEAR ANAL-THEOR, V32, P819
[4]   On the finite-volume approximation of regular solutions of the p-Laplacian [J].
Andreianov, Boris ;
Boyer, Franck ;
Hubert, Florence .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2006, 26 (03) :472-502
[5]  
Antontsev S.N., 2007, P CMNE CILAMCE C U P
[6]  
ATKINSON C, 1984, Q J MECH APPL MATH, V37, P401, DOI 10.1093/qjmam/37.3.401
[7]   ON LIMITS OF SOLUTIONS OF ELLIPTIC PROBLEMS WITH NEARLY CRITICAL EXPONENT [J].
AZORERO, JG ;
ALONSO, IP .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (11-12) :2113-2126
[8]  
Balay S., 2010, ANL9511
[9]   FINITE-ELEMENT APPROXIMATION OF THE P-LAPLACIAN [J].
BARRETT, JW ;
LIU, WB .
MATHEMATICS OF COMPUTATION, 1993, 61 (204) :523-537
[10]   A multigrid algorithm for the p-Laplacian [J].
Bermejo, R ;
Infante, JA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (05) :1774-1789