Validation of the 3D AMR SIP-CESE Solar Wind Model for Four Carrington Rotations

被引:73
作者
Feng, Xueshang [1 ]
Yang, Liping [1 ,2 ]
Xiang, Changqing [1 ]
Jiang, Caowei [1 ,2 ]
Ma, Xiaopeng [1 ,2 ]
Wu, S. T. [3 ]
Zhong, DingKun [1 ]
Zhou, Yufen [1 ]
机构
[1] Chinese Acad Sci, SIGMA Weather Grp, State Key Lab Space Weather, Ctr Space Sci & Appl Res, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Coll Earth Sci, Grad Univ, Beijing 100049, Peoples R China
[3] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Solar wind; Magnetohydrodynamics (MHD); Numerical simulation; ADAPTIVE MESH REFINEMENT; CORONAL MASS EJECTIONS; MAGNETIC-FIELD; DECLINING PHASE; POLAR FIELD; DATA-DRIVEN; FLUX; MHD; SUN; HOLES;
D O I
10.1007/s11207-012-9969-9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We carry out the adaptive mesh refinement (AMR) implementation of our solar-interplanetary space-time conservation element and solution element (CESE) magnetohydrodynamic model (SIP-CESE MHD model) using a six-component grid system (Feng, Zhou, and Wu, Astrophys. J. 655, 1110, 2007; Feng et al., Astrophys. J. 723, 300, 2010). By transforming the governing MHD equations from the physical space (x,y,z) to the computational space (xi,eta,zeta) while retaining the form of conservation (Jiang et al., Solar Phys. 267, 463, 2010), the SIP-AMR-CESE MHD model is implemented in the reference coordinates with the aid of the parallel AMR package PARAMESH available at http://sourceforge.net/projects/paramesh/. Meanwhile, the volumetric heating source terms derived from the topology of the magnetic-field expansion factor and the minimum angular separation (at the photosphere) between an open-field foot point and its nearest coronal-hole boundary are also included. We show the preliminary results of applying the SIP-AMR-CESE MHD model for simulating the solar-wind background of different solar-activity phases by comparison with SOHO observations and other spacecraft data from OMNI. Our numerical results show overall good agreements in the solar corona and in interplanetary space with these multiple-spacecraft observations.
引用
收藏
页码:207 / 229
页数:23
相关论文
共 80 条
[71]   Models of Solar Wind Structures and Their Interaction with the Earth's Space Environment [J].
Watermann, J. ;
Wintoft, P. ;
Sanahuja, B. ;
Saiz, E. ;
Poedts, S. ;
Palmroth, M. ;
Milillo, A. ;
Metallinou, F. -A. ;
Jacobs, C. ;
Ganushkina, N. Y. ;
Daglis, I. A. ;
Cid, C. ;
Cerrato, Y. ;
Balasis, G. ;
Aylward, A. D. ;
Aran, A. .
SPACE SCIENCE REVIEWS, 2009, 147 (3-4) :233-270
[72]   Global distribution of coronal mass outputs and its relation to solar magnetic field structures [J].
Wei, FS ;
Feng, XS ;
Cai, HC ;
Zhou, QJ .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2003, 108 (A6)
[73]   Data-driven magnetohydrodynamic model for active region evolution [J].
Wu, S. T. ;
Wang, A. H. ;
Liu, Yang ;
Hoeksema, J. Todd .
ASTROPHYSICAL JOURNAL, 2006, 652 (01) :800-811
[74]   Simulation of the Unusual Solar Minimum with 3D SIP-CESE MHD Model by Comparison with Multi-Satellite Observations [J].
Yang, Liping ;
Feng, Xueshang ;
Xiang, Changqing ;
Zhang, Shaohua ;
Wu, S. T. .
SOLAR PHYSICS, 2011, 271 (1-2) :91-110
[75]   A nonpotential model for the Sun's open magnetic flux [J].
Yeates, A. R. ;
Mackay, D. H. ;
van Ballegooijen, A. A. ;
Constable, J. A. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2010, 115
[76]   COMPARISON OF A GLOBAL MAGNETIC EVOLUTION MODEL WITH OBSERVATIONS OF CORONAL MASS EJECTIONS [J].
Yeates, A. R. ;
Attrill, G. D. R. ;
Nandy, Dibyendu ;
Mackay, D. H. ;
Martens, P. C. H. ;
van Ballegooijen, A. A. .
ASTROPHYSICAL JOURNAL, 2010, 709 (02) :1238-1248
[77]   The NIRVANA code: Parallel computational MHD with adaptive mesh refinement [J].
Ziegler, U. .
COMPUTER PHYSICS COMMUNICATIONS, 2008, 179 (04) :227-244
[78]  
冯学尚, 2011, [中国科学. 地球科学, Scientia Sinica Terrae], V41, P1
[79]  
[No title captured]
[80]  
[No title captured]