Hochschild Cohomology with Support

被引:5
|
作者
Lowen, Wendy [1 ]
机构
[1] Univ Antwerp, Dept Wiskunde Informat, B-2020 Antwerp, Belgium
关键词
DEFORMATION; ALGEBRAS;
D O I
10.1093/imrn/rnu079
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the functoriality properties of map-graded Hochschild complexes. We show that the category Map of map-graded categories is naturally a stack over the category of small categories endowed with a certain Grothendieck topology of 3-covers. For a related topology of infinity-covers on the Cartesian morphisms in Map, we prove that taking map-graded Hochschild complexes defines a sheaf. From the functoriality related to "injections" between map-graded categories, we obtain Hochschild complexes "with support". We revisit Keller's arrow category argument from this perspective, and introduce and investigate a general Grothendieck construction which encompasses both the map-graded categories associated to presheaves of algebras and certain generalized arrow categories, which together constitute a pair of complementary tools for deconstructing Hochschild complexes.
引用
收藏
页码:4741 / 4812
页数:72
相关论文
共 50 条
  • [1] Support varieties and hochschild cohomology rings
    Snashall, N
    Solberg, O
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2004, 88 : 705 - 732
  • [2] HOCHSCHILD COHOMOLOGY AND SUPPORT VARIETIES FOR TAME HECKE ALGEBRAS
    Schroll, Sibylle
    Snashall, Nicole
    QUARTERLY JOURNAL OF MATHEMATICS, 2011, 62 (04): : 1017 - 1029
  • [3] On a cohomology of digraphs and Hochschild cohomology
    Grigor'yan, Alexander
    Muranov, Yuri
    Yau, Shing-Tung
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2016, 11 (02) : 209 - 230
  • [4] On a cohomology of digraphs and Hochschild cohomology
    Alexander Grigor’yan
    Yuri Muranov
    Shing-Tung Yau
    Journal of Homotopy and Related Structures, 2016, 11 : 209 - 230
  • [5] Going from cohomology to Hochschild cohomology
    Sköldberg, E
    JOURNAL OF ALGEBRA, 2005, 288 (02) : 263 - 278
  • [6] On Hochschild cohomology of orders
    S. Koenig
    K. Sanada
    N. Snashall
    Archiv der Mathematik, 2003, 81 : 627 - 635
  • [7] Secondary Hochschild Cohomology
    Staic, Mihai D.
    ALGEBRAS AND REPRESENTATION THEORY, 2016, 19 (01) : 47 - 56
  • [8] Hochschild cohomology and extensions
    Kurdiani, RT
    RUSSIAN MATHEMATICAL SURVEYS, 2005, 60 (05) : 975 - 976
  • [9] On Hochschild cohomology of orders
    Koenig, S
    Sanada, K
    Snashall, N
    ARCHIV DER MATHEMATIK, 2003, 81 (06) : 627 - 635
  • [10] Idempotent and Hochschild cohomology
    Bendiffalah, B
    Guin, D
    COMPTES RENDUS MATHEMATIQUE, 2006, 342 (06) : 371 - 376