Full Nesterov-Todd step feasible interior-point method for the Cartesian P *()-SCLCP

被引:25
作者
Wang, G. Q. [1 ]
Lesaja, G. [2 ]
机构
[1] Shanghai Univ Engn Sci, Coll Fundamental Studies, Shanghai 201620, Peoples R China
[2] Georgia So Univ, Dept Math Sci, Statesboro, GA 30460 USA
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
interior-point methods; linear complementarity problem; Cartesian P; (*)()-property; Euclidean Jordan algebra and symmetric cones; Nesterov-Todd scaling; full-step updates; polynomial complexity; 90C33; 90C51; LINEAR COMPLEMENTARITY-PROBLEM; REGULARIZATION METHOD; SEARCH DIRECTIONS; JORDAN ALGEBRAS; SYMMETRIC CONES; ALGORITHMS; CONVERGENCE; UNIQUENESS;
D O I
10.1080/10556788.2013.781600
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we present a feasible interior-point method (IPM) for the Cartesian P-*()-linear complementarity problem over symmetric cones (SCLCP) that is based on the classical logarithmic barrier function. The method uses Nesterov-Todd search directions and full step updates of iterates. With the appropriate choice of parameters the algorithm generates a sequence of iterates in the small neighbourhood of the central path which implies global convergence of the method. Moreover, this neighbourhood permits the quadratic convergence of the iterates. The iteration complexity of the method is O((1+4)root rlog(r/E)) which matches the currently best known iteration bound for IPMs solving the Cartesian P-*()-SCLCP.
引用
收藏
页码:600 / 618
页数:19
相关论文
共 44 条
[1]   A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization [J].
Bai, YQ ;
El Ghami, M ;
Roos, C .
SIAM JOURNAL ON OPTIMIZATION, 2004, 15 (01) :101-128
[2]   Cartesian P-property and its applications to the semidefinite linear complementarity problem [J].
Chen, X ;
Qi, HD .
MATHEMATICAL PROGRAMMING, 2006, 106 (01) :177-201
[3]  
de Klerk E., 2002, Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications
[4]  
Faraut J., 1994, Oxford Mathematical Monographs
[5]   Linear systems in Jordan algebras and primal-dual interior-point algorithms [J].
Faybusovich, L .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 86 (01) :149-175
[6]   A Jordan-algebraic approach to potential-reduction algorithms [J].
Faybusovich, L .
MATHEMATISCHE ZEITSCHRIFT, 2002, 239 (01) :117-129
[7]   Euclidean Jordan algebras and interior-point algorithms [J].
Faybusovich, L .
POSITIVITY, 1997, 1 (04) :331-357
[8]  
Fukushima M, 2001, SIAM J OPTIMIZ, V12, P436
[9]   Some global uniqueness and solvability results for linear complementarity problems over symmetric cones [J].
Gowda, M. Seetharama ;
Sznajder, R. .
SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (02) :461-481
[10]   Automorphism invariance of P- and GUS-properties of linear transformations on Euclidean Jordan algebras [J].
Gowda, MS ;
Sznajder, R .
MATHEMATICS OF OPERATIONS RESEARCH, 2006, 31 (01) :109-123