Gauss map harmonicity and mean curvature of a hypersurface in a homogeneous manifold

被引:4
|
作者
Bittencourt, F
Ripoll, J
机构
[1] Univ Fed Santa Maria, CCNE, Dept Matemat, BR-97105900 Santa Maria, RS, Brazil
[2] Univ Fed Rio Grande Sul, Inst Matemat, BR-91501970 Porto Alegre, RS, Brazil
关键词
Gauss map; harmonic map; mean curvature;
D O I
10.2140/pjm.2006.224.45
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a Gauss map of an orientable hypersurface in a homogeneous manifold with an invariant Riemannian metric. Our main objective is to extend to this setting some results on the Gauss map of a constant mean curvature hypersurface of an Euclidean space, namely the Ruh - Vilm theorem relating the harmonicity of the Gauss map and the constancy of the mean curvature, and the Hoffman - Osserman - Schoen theorem characterizing the plane and the circular cylinder as the only complete constant mean curvature surfaces whose Gauss image is contained in a closed hemisphere of the sphere.
引用
收藏
页码:45 / 63
页数:19
相关论文
共 50 条