Exploring Advances in Transformers and CNN for Skin Lesion Diagnosis on Small Datasets

被引:8
作者
de Lima, Leandro M. [1 ,2 ]
Krohling, Renato A. [1 ,2 ]
机构
[1] Univ Fed Espirito Santo, Grad Program Comp Sci, Vitoria, ES, Brazil
[2] Univ Fed Espirito Santo, DEPR, Labcin Nat Inspired Comp Lab, Vitoria, ES, Brazil
来源
INTELLIGENT SYSTEMS, PT II | 2022年 / 13654卷
关键词
Transformer; Convolutional neural network; Skin lesion; Multimodal fusion; Classification;
D O I
10.1007/978-3-031-21689-3_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Skin cancer is one of the most common types of cancer in the world. Different computer-aided diagnosis systems have been proposed to tackle skin lesion diagnosis, most of them based on deep convolutional neural networks. However, recent advances in computer vision achieved state-of-the-art results in many tasks, notably transformer-based networks. We explore and evaluate advances in computer vision architectures, training methods and multimodal feature fusion for skin lesion diagnosis task. Experiments show that PiT (0.800 +/- 0.006), CoaT (0.780 +/- 0.024) and ViT (0.771 +/- 0.018) transformer-based backbone models with MetaBlock fusion achieved state-of-the-art results for balanced accuracy on PAD-UFES-20 dataset.
引用
收藏
页码:282 / 296
页数:15
相关论文
共 57 条
[1]   STORM-GAN: Spatio-Temporal Meta-GAN for Cross-City Estimation of Human Mobility Responses to COVID- [J].
Bao, Han ;
Zhou, Xun ;
Xie, Yiqun ;
Li, Yanhua ;
Jia, Xiaowei .
2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, :1-10
[2]  
Beyer L., 2022, COMPUTER VISION PATT, P10925
[3]  
Beyer L, 2020, Arxiv, DOI arXiv:2006.07159
[4]   CNN Variants for Computer Vision: History, Architecture, Application, Challenges and Future Scope [J].
Bhatt, Dulari ;
Patel, Chirag ;
Talsania, Hardik ;
Patel, Jigar ;
Vaghela, Rasmika ;
Pandya, Sharnil ;
Modi, Kirit ;
Ghayvat, Hemant .
ELECTRONICS, 2021, 10 (20)
[5]  
Brock A, 2021, INT C MACHINE LEARNI, V139
[6]   GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond [J].
Cao, Yue ;
Xu, Jiarui ;
Lin, Stephen ;
Wei, Fangyun ;
Hu, Han .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :1971-1980
[7]   Emerging Properties in Self-Supervised Vision Transformers [J].
Caron, Mathilde ;
Touvron, Hugo ;
Misra, Ishan ;
Jegou, Herve ;
Mairal, Julien ;
Bojanowski, Piotr ;
Joulin, Armand .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :9630-9640
[8]   CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification [J].
Chen, Chun-Fu ;
Fan, Quanfu ;
Panda, Rameswar .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :347-356
[9]  
Chu XX, 2021, ADV NEUR IN
[10]  
Das T., 2021, Skin Cancer: Pathogenesis and Diagnosis, P143, DOI 10.1007/978-981-16-0364-89