The dynamics of natural mortality for pest control model with impulsive effect

被引:8
作者
Wang, Linjun [1 ,2 ]
Xie, Youxiang [2 ]
Fu, Jianqin [3 ]
机构
[1] China Three Gorges Univ, Coll Mech & Mat Engn, Hubei Key Lab Hydroelect Machinery Design & Maint, Yichang 443002, Hubei, Peoples R China
[2] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[3] Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2013年 / 350卷 / 06期
基金
中国国家自然科学基金;
关键词
EPIDEMIC MODEL;
D O I
10.1016/j.jfranklin.2013.03.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a mathematical model is proposed with biologically based impulsive control strategy for pest control. Some sufficient conditions for the existence and globally asymptotical stability of the semi-trivial periodic solution are obtained. Also, the conditions ensuring the permanence of system are given. In addition, we show that there exists a global asymptotically stable semi-trivial periodic solution via bifurcation theory. (C) 2013 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1443 / 1461
页数:19
相关论文
共 29 条
[1]   INFECTIOUS-DISEASES AND POPULATION-CYCLES OF FOREST INSECTS [J].
ANDERSON, RM ;
MAY, RM .
SCIENCE, 1980, 210 (4470) :658-661
[2]   THE POPULATION-DYNAMICS OF MICRO-PARASITES AND THEIR INVERTEBRATE HOSTS [J].
ANDERSON, RM ;
MAY, RM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1981, 291 (1054) :451-524
[3]  
[Anonymous], 1995, World Sci. Ser. Nonlinear Sci., Ser. A., DOI DOI 10.1142/2892
[4]  
[Anonymous], 2006, CONT MATH ITS APPL
[5]  
[Anonymous], 1997, Dynamic Impulse Systems: Theory and Applications
[6]   Qualitative analysis of Beddington-DeAngelis type impulsive predator-prey models [J].
Baek, H. K. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (03) :1312-1322
[7]  
Bainov D., 1993, PITMAN MONOGRAPHS SU, V66
[8]  
DeBach P., 1964, BIOL CONTROL INSECT
[9]   Pseudo-almost periodic solutions for some classes of nonautonomous partial evolution equations Toka Diagana [J].
Diagana, Toka .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (08) :2082-2098
[10]   Nonlinear science - The impact of biology [J].
Holden, AV .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1997, 334B (5-6) :971-1014