LEAST ACTION NODAL SOLUTIONS FOR THE QUADRATIC CHOQUARD EQUATION

被引:56
作者
Ghimenti, Marco [1 ]
Moroz, Vitaly [2 ]
Van Schaftingen, Jean [3 ]
机构
[1] Univ Pisa, Dipartimento Matemat, Largo B Pontecorvo 5, I-56100 Pisa, Italy
[2] Swansea Univ, Dept Math, Singleton Pk, Swansea SA2 8PP, W Glam, Wales
[3] Catholic Univ Louvain, Inst Rech Math & Phys, Chemin Cyclotron 2 Bte L7-01-01, B-1348 Louvain La Neuve, Belgium
关键词
Stationary nonlinear Schrodinger-Newton equation; stationary Hartree equation; nodal Nehari set; concentration; compactness; CONCENTRATION-COMPACTNESS PRINCIPLE; GROUND-STATES; EXISTENCE; CALCULUS;
D O I
10.1090/proc/13247
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of a minimal action nodal solution for the quadratic Choquard equation -Delta u + u = (I-alpha * parallel to u parallel to(2))u in R-N, where I-alpha is the Riesz potential of order alpha is an element of (0, N). The solution is constructed as the limit of minimal action nodal solutions for the nonlinear Choquard equations -Delta u + u = (I-alpha * parallel to u parallel to(p))vertical bar u vertical bar(p-2) u in R-N, when p -> 2. The existence of minimal action nodal solutions for p > 2 can be proved using a variational minimax procedure over a Nehari nodal set. No minimal action nodal solutions exist when p < 2.
引用
收藏
页码:737 / 747
页数:11
相关论文
共 33 条
[1]   Multibump solutions of nonlinear periodic Schrodinger equations in a degenerate setting [J].
Ackermann, N ;
Weth, T .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2005, 7 (03) :269-298
[2]  
Alexandrov A. S., 2010, SPRINGER SER SOLID-S, V159
[3]  
[Anonymous], 2007, MEASURE THEORY
[4]  
Bogachev V.I., 2007, Measure Theory, VII, DOI [DOI 10.1007/978-3-540-34514-5, 10.1007/978-3-540-34514-5]
[5]   Soliton dynamics for the generalized Choquard equation [J].
Bonanno, Claudio ;
d'Avenia, Pietro ;
Ghimenti, Marco ;
Squassina, Marco .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 417 (01) :180-199
[6]   A sign-changing solution for a superlinear Dirichlet problem [J].
Castro, A ;
Cossio, J ;
Neuberger, JM .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1997, 27 (04) :1041-1053
[7]  
Castro A., 1998, ELECT J DIFFERENTIAL
[8]   SOME EXISTENCE RESULTS FOR SUPERLINEAR ELLIPTIC BOUNDARY-VALUE-PROBLEMS INVOLVING CRITICAL EXPONENTS [J].
CERAMI, G ;
SOLIMINI, S ;
STRUWE, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 69 (03) :289-306
[9]   Ground states for the pseudo-relativistic Hartree equation with external potential [J].
Cingolani, Silvia ;
Secchi, Simone .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2015, 145 (01) :73-90
[10]  
Cingolani S, 2013, DIFFER INTEGRAL EQU, V26, P867