Deciphering the role of V200A and N291S mutations leading to LPL deficiency

被引:11
作者
Botta, Margherita [1 ]
Maurer, Elisabeth [2 ]
Ruscica, Massimiliano [1 ]
Romeo, Stefano [3 ,4 ,5 ]
Stulnig, Thomas M. [6 ]
Pingitore, Piero [3 ]
机构
[1] Univ Milan, Dept Pharmacol & Biomol Sci DisFeB, I-20133 Milan, Italy
[2] Med Univ Innsbruck, Div Human Genet, A-6020 Innsbruck, Austria
[3] Univ Gothenburg, Dept Mol & Clin Med, Sahlgrenska Acad, Gothenburg, Sweden
[4] Sahlgrens Univ Hosp, Cardiol Dept, Gothenburg, Sweden
[5] Magna Graecia Univ Catanzaro, Dept Med & Surg Sci, Clin Nutr Unit, Catanzaro, Italy
[6] Med Univ Vienna, Dept Med 3, Clin Div Endocrinol & Metab, Waehringer Guertel 18-20, A-1090 Vienna, Austria
基金
瑞典研究理事会;
关键词
Familial hypertrygliceridemia; Lipase deficiency; Missense and frameshift mutations; Lipoprotein lipase; rs528243561; rs767260655; rs268; cs941507; LIPOPROTEIN-LIPASE DEFICIENCY; COMMON MUTATION; GENE; VARIANTS; PATIENT; BINDING; EXON-5;
D O I
10.1016/j.atherosclerosis.2019.01.004
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background and aims: Type I hyperlipoproteinemia is an autosomal recessive disorder of lipoprotein metabolism caused by mutations in the LPL gene, with an estimated prevalence in the general population of 1 in a million. In this work, we studied the molecular mechanism of two known mutations in the LPL gene in ex vivo and in vitro experiments and also the effect of two splice site mutations in ex vivo experiments. Methods: Two patients with hypertriglyceridemia were selected from the Lipid Clinic in Vienna. The first patient was compound heterozygote for c.680T > C (exon 5; p.V200A) and c. 1139+1G > A (intron 7 splice site). The second patient was compound heterozygote for c. 953A > G (exon 6; p.N291S) and c.1019-3C > A (intron 6 splice site). The LPL gene was sequenced and post-heparin plasma samples (ex vivo) were used to test LPL activity. In vitro experiments were performed in HEK 293T/17 cells transiently transfected with wild type or mutant LPL plasmids. Cell lysate and media were used to evaluate LPL production, secretion, activity and dimerization by Western blot analysis and LPL enzymatic assay, respectively. Results: Our data show that in both patients, LPL activity is absent. V200A is a mutation that alters LPL secretion and activity whereas the N291S mutation affects LPL activity, but both mutations do not affect dimerization. The effect of these mutations in patients is more severe since they have splice site mutations on the other allele. Conclusions: We characterized these LPL mutations at the molecular level showing that are pathogenic.
引用
收藏
页码:45 / 51
页数:7
相关论文
共 39 条
[1]   Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons [J].
Beigneux, Anne P. ;
Davies, Brandon S. J. ;
Gin, Peter ;
Weinstein, Michael M. ;
Farber, Emily ;
Qiao, Xin ;
Peale, Franklin ;
Bunting, Stuart ;
Walzem, Rosemary L. ;
Wong, Jinny S. ;
Blaner, William S. ;
Ding, Zhi-Ming ;
Melford, Kristan ;
Wongsiriroj, Nuttaporn ;
Shu, Xiao ;
de Sauvage, Fred ;
Ryan, Robert O. ;
Fong, Loren G. ;
Bensadoun, Andre ;
Young, Stephen G. .
CELL METABOLISM, 2007, 5 (04) :279-291
[2]   Lipoprotein abnormalities in compound heterozygous Lipoprotein lipase deficiency after treatment with a low-fat diet and orlistat [J].
Blackett, Piers ;
Tryggestad, Jeanie ;
Krishnan, Sowmya ;
Li, Shibo ;
Xu, Weihong ;
Alaupovic, Petar ;
Quiroga, Carmen ;
Copeland, Kenneth .
JOURNAL OF CLINICAL LIPIDOLOGY, 2013, 7 (02) :132-139
[3]  
Brunzell J. D., GENEREVIEWS
[4]   THE MUTANT ASN(291)-]SER HUMAN LIPOPROTEIN-LIPASE IS ASSOCIATED WITH REDUCED CATALYTIC ACTIVITY AND DOES NOT INFLUENCE BINDING TO HEPARIN [J].
BUSCA, R ;
PEINADO, J ;
VILELLA, E ;
AUWERX, J ;
DEEB, SS ;
VILARO, S ;
REINA, M .
FEBS LETTERS, 1995, 367 (03) :257-262
[5]   Molecular analysis of three known and one novel LPL variants in patients with type I hyperlipoproteinemia [J].
Caddeo, A. ;
Mancina, R. M. ;
Pirazzi, C. ;
Russo, C. ;
Sasidharan, K. ;
Sandstedt, J. ;
Maurotti, S. ;
Montalcini, T. ;
Pujia, A. ;
Leren, T. P. ;
Romeo, S. ;
Pingitore, P. .
NUTRITION METABOLISM AND CARDIOVASCULAR DISEASES, 2018, 28 (02) :158-164
[6]   APOA5 and triglyceride metabolism, lesson from human APOA5 deficiency [J].
Calandra, S ;
Oliva, CP ;
Tarugi, P ;
Bertolini, S .
CURRENT OPINION IN LIPIDOLOGY, 2006, 17 (02) :122-127
[7]  
FOJO SS, 1988, J BIOL CHEM, V263, P17913
[8]   Lipoprotein lipase (LPL) deficiency: a new patient homozygote for the preponderant mutation Gly188Glu in the human LPL gene and review of reported mutations: 75 % are clustered in exons 5 and 6 [J].
Gilbert, B ;
Rouis, M ;
Griglio, S ;
de Lumley, L ;
Laplaud, PM .
ANNALES DE GENETIQUE, 2001, 44 (01) :25-32
[9]   The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management [J].
Hegele, Robert A. ;
Ginsberg, Henry N. ;
Chapman, M. John ;
Nordestgaard, Borge G. ;
Kuivenhoven, Jan Albert ;
Averna, Maurizio ;
Boren, Jan ;
Bruckert, Eric ;
Catapano, Alberico L. ;
Descamps, Olivier S. ;
Hovingh, G. Kees ;
Humphries, Steve E. ;
Kovanen, Petri T. ;
Masana, Luis ;
Pajukanta, Paivi ;
Parhofer, Klaus G. ;
Raal, Frederick J. ;
Ray, Kausik K. ;
Santos, Raul D. ;
Stalenhoef, Anton F. H. ;
Stroes, Erik ;
Taskinen, Marja-Riitta ;
Tybjrg-Hansen, Anne ;
Watts, Gerald F. ;
Wiklund, Olov .
LANCET DIABETES & ENDOCRINOLOGY, 2014, 2 (08) :655-666
[10]  
HOLZL B, 1994, J LIPID RES, V35, P2161