Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues

被引:244
作者
De Cecco, Marco [1 ]
Criscione, Steven W. [1 ]
Peterson, Abigail L. [1 ]
Neretti, Nicola [1 ]
Sedivy, John M. [1 ]
Kreiling, Jill A. [1 ]
机构
[1] Brown Univ, Ctr Genom & Prote, Dept Mol Biol Cell Biol & Biochem, Providence, RI 02903 USA
来源
AGING-US | 2013年 / 5卷 / 12期
关键词
Aging; epigenetics; chromatin; transposable elements; DIFFERENTIAL EXPRESSION ANALYSIS; GENE-EXPRESSION; DNA-DAMAGE; L1; RETROTRANSPOSITION; CALORIC RESTRICTION; LINE-1; CELLULAR SENESCENCE; RNA-SEQ; CHROMATIN; ACCUMULATION;
D O I
10.18632/aging.100621
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Transposable elements (TEs) were discovered by Barbara McClintock in maize and have since been found to be ubiquitous in all living organisms. Transposition is mutagenic and organisms have evolved mechanisms to repress the activity of their endogenous TEs. Transposition in somatic cells is very low, but recent evidence suggests that it may be derepressed in some cases, such as cancer development. We have found that during normal aging several families of retrotransposable elements (RTEs) start being transcribed in mouse tissues. In advanced age the expression culminates in active transposition. These processes are counteracted by calorie restriction (CR), an intervention that slows down aging. Retrotransposition is also activated in age-associated, naturally occurring cancers in the mouse. We suggest that somatic retrotransposition is a hitherto unappreciated aging process. Mobilization of RTEs is likely to be an important contributor to the progressive dysfunction of aging cells.
引用
收藏
页码:867 / 883
页数:17
相关论文
共 69 条
[1]   How do mammalian transposons induce genetic variation? A conceptual framework The age, structure, allele frequency, and genome context of transposable elements may define their wide-ranging biological impacts [J].
Akagi, Keiko ;
Li, Jingfeng ;
Symer, David E. .
BIOESSAYS, 2013, 35 (04) :397-407
[2]   Differential expression analysis for sequence count data [J].
Anders, Simon ;
Huber, Wolfgang .
GENOME BIOLOGY, 2010, 11 (10)
[3]   Functional impact of the human mobilome [J].
Babatz, Timothy D. ;
Burns, Kathleen H. .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2013, 23 (03) :264-270
[4]   Somatic retrotransposition alters the genetic landscape of the human brain [J].
Baillie, J. Kenneth ;
Barnett, Mark W. ;
Upton, Kyle R. ;
Gerhardt, Daniel J. ;
Richmond, Todd A. ;
De Sapio, Fioravante ;
Brennan, Paul ;
Rizzu, Patrizia ;
Smith, Sarah ;
Fell, Mark ;
Talbot, Richard T. ;
Gustincich, Stefano ;
Freeman, Thomas C. ;
Mattick, John S. ;
Hume, David A. ;
Heutink, Peter ;
Carninci, Piero ;
Jeddeloh, Jeffrey A. ;
Faulkner, Geoffrey J. .
NATURE, 2011, 479 (7374) :534-537
[5]   LINE-1 Retrotransposition Activity in Human Genomes [J].
Beck, Christine R. ;
Collier, Pamela ;
Macfarlane, Catriona ;
Malig, Maika ;
Kidd, Jeffrey M. ;
Eichler, Evan E. ;
Badge, Richard M. ;
Moran, John V. .
CELL, 2010, 141 (07) :1159-U110
[6]   Mammalian non-LTR retrotransposons: For better or worse, in sickness and in health [J].
Belancio, Victoria P. ;
Hedges, Dale J. ;
Deininger, Prescott .
GENOME RESEARCH, 2008, 18 (03) :343-358
[7]   Somatic expression of LINE-1 elements in human tissues [J].
Belancio, Victoria P. ;
Roy-Engel, Astrid M. ;
Pochampally, Radhika R. ;
Deininger, Prescott .
NUCLEIC ACIDS RESEARCH, 2010, 38 (12) :3909-3922
[8]   Human LINE-1 retrotransposon induces DNA damage and apoptosis in cancer cells [J].
Belgnaoui, S. Mehdi ;
Gosden, Roger G. ;
Semmes, O. John ;
Haoudi, Abdelali .
CANCER CELL INTERNATIONAL, 2006, 6 (1)
[9]  
Blankenberg Daniel, 2010, Curr Protoc Mol Biol, VChapter 19, DOI 10.1002/0471142727.mb1910s89
[10]   Human Transposon Tectonics [J].
Burns, Kathleen H. ;
Boeke, Jef D. .
CELL, 2012, 149 (04) :740-752