MULTIPLES OF LATTICE POLYTOPES WITHOUT INTERIOR LATTICE POINTS

被引:36
作者
Batyrev, Victor [1 ]
Nill, Benjamin [2 ]
机构
[1] Univ Tubingen, Inst Math, D-72076 Tubingen, Germany
[2] Free Univ Berlin, Arbeitsgrp Gitterpolytope, D-14195 Berlin, Germany
关键词
Lattice polytope; principal A-determinant;
D O I
10.17323/1609-4514-2007-7-2-195-207
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Delta be an n-dimensional lattice polytope. The smallest non-negative integer i such that k Delta contains no interior lattice points for 1 <= k <= n -i we call the degree of Delta. We consider lattice polytopes of fixed degree d and arbitrary dimension n. Our main result is a complete classification of n-dimensional lattice polytopes of degree d = 1. This is a generalization of the classification of lattice polygons (n = 2) without interior lattice points due to Arkinstall, Khovanskii, Koelman and Schicho. Our classification shows that the secondary polytope Sec(Delta) of a lattice polytope of degree 1 is always a simple polytope.
引用
收藏
页码:195 / 207
页数:13
相关论文
共 8 条
[1]  
[Anonymous], 1980, ANN DISCRETE MATH, DOI DOI 10.1016/S0167-5060(08)70717-9
[2]  
[Anonymous], 2000, J. Eur. Math. Soc. (JEMS)
[3]  
ARKINSTALL J. R., 1980, B MATH SOC SCI MATH, V22, P259
[4]   All toric local complete intersection singularities admit projective crepant resolutions [J].
Dais, DI ;
Haase, C ;
Ziegler, GM .
TOHOKU MATHEMATICAL JOURNAL, 2001, 53 (01) :95-107
[5]   Newton polygons, curves on torus surfaces, and the converse Weil theorem [J].
Khovanskii, AG .
RUSSIAN MATHEMATICAL SURVEYS, 1997, 52 (06) :1251-1279
[6]   Simplification of surface parametrizations - a lattice polygon approach [J].
Schicho, J .
JOURNAL OF SYMBOLIC COMPUTATION, 2003, 36 (3-4) :535-554
[7]   A MONOTONICITY PROPERTY OF H-VECTORS AND H-ASTERISK-VECTORS [J].
STANLEY, RP .
EUROPEAN JOURNAL OF COMBINATORICS, 1993, 14 (03) :251-258
[8]  
[No title captured]