Multiplexed conditional genome editing with Cas12a in Drosophila

被引:36
作者
Port, Fillip [1 ]
Starostecka, Maja [1 ,2 ]
Boutros, Michael [1 ]
机构
[1] Heidelberg Univ, Div Signaling & Funct Genom, German Canc Res Ctr DKFZ, Dept Cell & Mol Biol,Med Fac Mannheim, D-69120 Heidelberg, Germany
[2] European Mol Biol Lab EMBL, Genome Biol Unit, D-69117 Heidelberg, Germany
基金
欧洲研究理事会;
关键词
Cas12a; Drosophila; CRISPR; genome engineering; Cas9; RNA-GUIDED ENDONUCLEASE; CPF1; SPECIFICITIES; EXPRESSION; GERMLINE; PLATFORM; TOOLKIT;
D O I
10.1073/pnas.2004655117
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
CRISPR-Cas genome engineering has revolutionized biomedical research by enabling targeted genomemodificationwith unprecedented ease. In the popular model organism Drosophila melanogaster, gene editing has so far relied exclusively on the prototypical CRISPR nuclease Cas9. Additional CRISPR systems could expand the genomic target space, offer additional modes of regulation, and enable the independent manipulation of genes in different cells of the same animal. Here we describe a platform for efficient Cas12a gene editing in Drosophila. We show that Cas12a from Lachnospiraceae bacterium, but not Acid-aminococcus spec., can mediate robust gene editing in vivo. In combination with most CRISPR RNAs (crRNAs), LbCas12a activity is high at 29 degrees C, but low at 18 degrees C, enabling modulation of gene editing by temperature. LbCas12a can directly utilize compact crRNA arrays that are substantially easier to construct than Cas9 single-guide RNA arrays, facilitating multiplex genome engineering. Furthermore, we showthat conditional expression of LbCas12a is sufficient to mediate tightly controlled gene editing in a variety of tissues, allowing detailed analysis of gene function in a multicellular organism. We also test a variant of LbCas12a with a D156R point mutation and show that it has substantially higher activity and outperforms a state-of-the-art Cas9 system in identifying essential genes. Cas12a gene editing expands the genomeengineering toolbox in Drosophila and will be a powerful method for the functional annotation of the genome. This work also presents a fully genetically encoded Cas12a system in an animal, laying out principles for the development of similar systems in other genetically tractable organisms for multiplexed conditional genome engineering.
引用
收藏
页码:22890 / 22899
页数:10
相关论文
共 43 条
[21]   Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements [J].
Kosicki, Michael ;
Tomberg, Kart ;
Bradley, Allan .
NATURE BIOTECHNOLOGY, 2018, 36 (08) :765-+
[22]   Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis [J].
Malzahn, Aimee A. ;
Tang, Xu ;
Lee, Keunsub ;
Ren, Qiurong ;
Sretenovic, Simon ;
Zhang, Yingxiao ;
Chen, Hongqiao ;
Kang, Minjeong ;
Bao, Yu ;
Zheng, Xuelian ;
Deng, Kejun ;
Zhang, Tao ;
Salcedo, Valeria ;
Wang, Kan ;
Zhang, Yong ;
Qi, Yiping .
BMC BIOLOGY, 2019, 17 (1)
[23]   Assessment of Cas12a-mediated gene editing efficiency in plants [J].
Miquel Bernabe-Orts, Joan ;
Casas-Rodrigo, Ivan ;
Minguet, Eugenio G. ;
Landolfi, Viola ;
Garcia-Carpintero, Victor ;
Gianoglio, Silvia ;
Vazquez-Vilar, Marta ;
Granell, Antonio ;
Orzaez, Diego .
PLANT BIOTECHNOLOGY JOURNAL, 2019, 17 (10) :1971-1984
[24]   CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing [J].
Moreno-Mateos, Miguel A. ;
Fernandez, Juan P. ;
Rouet, Romain ;
Vejnar, Charles E. ;
Lane, Maura A. ;
Mis, Emily ;
Khokha, Mustafa K. ;
Doudna, Jennifer A. ;
Giraldez, Antonio J. .
NATURE COMMUNICATIONS, 2017, 8
[25]   Multiplexed and Programmable Regulation of Gene Networks with an Integrated RNA and CRISPR/Cas Toolkit in Human Cells [J].
Nissim, Lior ;
Perli, Samuel D. ;
Fridkin, Alexandra ;
Perez-Pinera, Pablo ;
Lu, Timothy K. .
MOLECULAR CELL, 2014, 54 (04) :698-710
[26]   The adult Drosophila posterior midgut is maintained by pluripotent stem cells [J].
Ohlstein, B ;
Spradling, A .
NATURE, 2006, 439 (7075) :470-474
[27]   The Transgenic RNAi Project at Harvard Medical School: Resources and Validation [J].
Perkins, Lizabeth A. ;
Holderbaum, Laura ;
Tao, Rong ;
Hu, Yanhui ;
Sopko, Richelle ;
McCall, Kim ;
Donghui Yang-Zhou ;
Flockhart, Ian ;
Binari, Richard ;
Shim, Hye-Seok ;
Miller, Audrey ;
Housden, Amy ;
Foos, Marianna ;
Randkelv, Sakara ;
Kelley, Colleen ;
Namgyal, Pema ;
Villalta, Christians ;
Liu, Lu-Ping ;
Jiang, Xia ;
Qiao Huan-Huan ;
Wang, Xia ;
Fujiyama, Asao ;
Toyoda, Atsushi ;
Ayers, Kathleen ;
Blum, Allison ;
Czech, Benjamin ;
Neumuller, Ralph ;
Yan, Dong ;
Cavallaro, Amanda ;
Hibbard, Karen ;
Hall, Don ;
Cooley, Lynn ;
Hannon, Gregory J. ;
Lehmann, Ruth ;
Parks, Annette ;
Mohr, Stephanie E. ;
Ueda, Ryu ;
Kondo, Shu ;
Ni, Jian-Quan ;
Perrimon, Norbert .
GENETICS, 2015, 201 (03) :843-U68
[28]   Analyzing CRISPR genome-editing experiments with CRISPResso [J].
Pinello, Luca ;
Canver, Matthew C. ;
Hoban, Megan D. ;
Orkin, Stuart H. ;
Kohn, Donald B. ;
Bauer, Daniel E. ;
Yuan, Guo-Cheng .
NATURE BIOTECHNOLOGY, 2016, 34 (07) :695-697
[29]   Wingless secretion promotes and requires retromer-dependent cycling of Wntless [J].
Port, Fillip ;
Kuster, Marco ;
Herr, Patrick ;
Furger, Edy ;
Baenziger, Carla ;
Hausmann, George ;
Basler, Konrad .
NATURE CELL BIOLOGY, 2008, 10 (02) :178-U48
[30]   A large-scale resource for tissue-specific CRISPR mutagenesis in Drosophila [J].
Port, Fillip ;
Strein, Claudia ;
Stricker, Mona ;
Rauscher, Benedikt ;
Heigwer, Florian ;
Zhou, Jun ;
Beyersdorffer, Celine ;
Frei, Jana ;
Hess, Amy ;
Kern, Katharina ;
Lange, Laura ;
Langner, Nora ;
Malamud, Roberta ;
Pavlovic, Bojana ;
Radecke, Kristin ;
Schmitt, Lukas ;
Voos, Lukas ;
Valentini, Erica ;
Boutros, Michael .
ELIFE, 2020, 9