Simulations to design an online motion compensation system for scanned particle beams

被引:53
作者
Groezinger, Sven Oliver [1 ]
Rietzel, Eike
Li, Qiang
Bert, Christoph
Haberer, Thomas
Kraft, Gerhard
机构
[1] GSI Darmstadt, D-64291 Darmstadt, Germany
[2] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Boston, MA 02114 USA
[3] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China
关键词
D O I
10.1088/0031-9155/51/14/016
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Respiration-induced target motion is a major problem in intensity-modulated radiation therapy. Beam segments are delivered serially to form the total dose distribution. In the presence of motion, the spatial relation between dose deposition from different segments will be lost. Usually, this results in over-and underdosage. Besides such interplay effects between target motion and dynamic beam delivery as known from photon therapy, changes in internal density have an impact on delivered dose for intensity-modulated charged particle therapy. In this study, we have analysed interplay effects between raster scanned carbon ion beams and target motion. Furthermore, the potential of an online motion strategy was assessed in several simulations. An extended version of the clinical treatment planning software was used to calculate dose distributions to moving targets with and without motion compensation. For motion compensation, each individual ion pencil beam tracked the planned target position in the lateral aswell as longitudinal direction. Target translations and rotations, including changes in internal density, were simulated. Target motion simulating breathing resulted in severe degradation of delivered dose distributions. For example, for motion amplitudes of +/- 15 mm, only 47% of the target volume received 80% of the planned dose. Unpredictability of resulting dose distributions was demonstrated by varying motion parameters. On the other hand, motion compensation allowed for dose distributions for moving targets comparable to those for static targets. Even limited compensation precision (standard deviation similar to 2 mm), introduced to simulate possible limitations of real-time target tracking, resulted in less than 3% loss in dose homogeneity.
引用
收藏
页码:3517 / 3531
页数:15
相关论文
共 36 条
[1]   Integrated radiotherapy imaging system (IRIS): design considerations of tumour tracking with linac gantry-mounted diagnostic x-ray systems with flat-panel detectors [J].
Berbeco, RI ;
Jiang, SB ;
Sharp, GC ;
Chen, GTY ;
Mostafavi, H ;
Shirato, H .
PHYSICS IN MEDICINE AND BIOLOGY, 2004, 49 (02) :243-255
[2]   Effects of motion on the total dose distribution [J].
Bortfeld, T ;
Jiang, SB ;
Rietzel, E .
SEMINARS IN RADIATION ONCOLOGY, 2004, 14 (01) :41-51
[3]   Effects of intra-fraction motion on IMRT dose delivery: statistical analysis and simulation [J].
Bortfeld, T ;
Jokivarsi, K ;
Goitein, M ;
Kung, J ;
Jiang, SB .
PHYSICS IN MEDICINE AND BIOLOGY, 2002, 47 (13) :2203-2220
[4]   Calibration of three-dimensional ultrasound images for image-guided radiation therapy [J].
Bouchet, LG ;
Meeks, SL ;
Goodchild, G ;
Bova, FJ ;
Buatti, JM ;
Friedman, WA .
PHYSICS IN MEDICINE AND BIOLOGY, 2001, 46 (02) :559-577
[5]   The university of Florida frameless high-precision stereotactic radiotherapy system [J].
Bova, FJ ;
Buatti, JM ;
Friedman, WA ;
Mendenhall, WM ;
Yang, CC ;
Liu, C .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1997, 38 (04) :875-882
[6]   What margins should be added to the clinical target volume in radiotherapy treatment planning for lung cancer? [J].
Ekberg, L ;
Holmberg, O ;
Wittgren, L ;
Bjelkengren, G ;
Landberg, T .
RADIOTHERAPY AND ONCOLOGY, 1998, 48 (01) :71-77
[7]   The effect of breathing and set-up errors on the cumulative dose to a lung tumor [J].
Engelsmann, M ;
Damen, EMF ;
De Jaeger, K ;
van Ingen, KM ;
Mijnheer, BJ .
RADIOTHERAPY AND ONCOLOGY, 2001, 60 (01) :95-105
[8]  
GROZINGER SO, 2000, RADIOTHER ONCOL S2, V73, pS77
[9]   MAGNETIC SCANNING SYSTEM FOR HEAVY-ION THERAPY [J].
HABERER, T ;
BECHER, W ;
SCHARDT, D ;
KRAFT, G .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1993, 330 (1-2) :296-305
[10]  
Hanley J., 1996, International Journal of Radiation Oncology Biology Physics, V36, P188, DOI 10.1016/S0360-3016(97)85401-6