Hybrid attribute conditional adversarial denoising autoencoder for zero-shot classification of mechanical intelligent fault diagnosis

被引:51
作者
Lv, Haixin [1 ]
Chen, Jinglong [1 ]
Pan, Tongyang [1 ]
Zhou, Zitong [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Fault diagnosis; Autoencoder; Generative adversarial network; Zero-shot classification; Shipborne antenna; NEURAL-NETWORKS;
D O I
10.1016/j.asoc.2020.106577
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data-based intelligent fault diagnosis method is a research hotspot in modern mechanical systems. However, due to practical limitations, fault samples under all working conditions cannot be obtained, which would cause the data-based model lack of particular training data, resulting in unsatisfied testing performance. Therefore, zero-shot classification of mechanical intelligent fault diagnosis is a very practical work. Inspired by the zero-shot learning method, hybrid attribute conditional adversarial denoising autoencoder (CADAE), which uses hybrid attribute as condition, is proposed to solve the zero-shot classification problem. CADAE consists of three network modules: an encoder, a generator and a discriminator. The discriminator is applied to control the data distribution of hidden layer encoded by the encoder, and we add hybrid attribute condition into hidden layer to control the reconstruction process of generator. Finally, the generator module of the trained CADAE would be used to generate samples to train a classifier for missing classes. The proposed method is verified with three datasets under different data missing conditions. The results show that the proposed method could effectively solve the zero-shot classification problem with high classification accuracy exceeds 95%. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 33 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]  
[Anonymous], 2016, ARXIV151105644V2
[3]  
[Anonymous], 2017, ARXIV170208423
[4]  
[Anonymous], 2013, ARXIV13056663
[5]  
[Anonymous], 2008, P INT C MACH LEARN I
[6]   Learning Deep Architectures for AI [J].
Bengio, Yoshua .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2009, 2 (01) :1-127
[7]   Generating Visual Representations for Zero-Shot Classification [J].
Bucher, Maxime ;
Herbin, Stephane ;
Jurie, Frederic .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, :2666-2673
[8]   Predicting Visual Exemplars of Unseen Classes for Zero-Shot Learning [J].
Changpinyo, Soravit ;
Chao, Wei-Lun ;
Sha, Fei .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :3496-3505
[9]   Synthesized Classifiers for Zero-Shot Learning [J].
Changpinyo, Soravit ;
Chao, Wei-Lun ;
Gong, Boqing ;
Sha, Fei .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :5327-5336
[10]  
Chen X, 2016, ADV NEUR IN, V29