Counting the number of trigonal curves of genus 5 over finite fields

被引:3
作者
Wennink, Thomas [1 ]
机构
[1] Univ Liverpool, Liverpool, Merseyside, England
关键词
Moduli space of curves; Trigonal curves; Plane curves; Finite fields; Trace of Frobenius; MODULI SPACES; POLYNOMIALS; COHOMOLOGY; POINTS;
D O I
10.1007/s10711-019-00508-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The trigonal curves of genus 5 can be represented by projective plane quintics that have one singularity of delta invariant one. Combining this with a partial sieve method for plane curves we count the number of such curves over any finite field. The main application is that this gives the motivic Euler characteristic of the moduli space of trigonal curves of genus 5.
引用
收藏
页码:31 / 48
页数:18
相关论文
共 11 条
[1]  
Arbarello E., 1984, Geometry of Algebraic Curves: Volume 1, V1
[2]  
Bergstrom J., UNPUB
[3]   Cohomology of moduli spaces of curves of genus three via point counts [J].
Bergstrom, Jonas .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 622 :155-187
[4]  
Bergström J, 2007, MATH ANN, V338, P207, DOI 10.1007/s00208-006-0073-z
[5]  
Bergström J, 2009, DOC MATH, V14, P259
[6]  
Chenevier G, 2019, ERGEB MATH GRENZGEB
[7]  
Chenevier G, 2015, AM MATH SOC, V237, P1121
[8]   Resolving mixed Hodge modules on configuration spaces [J].
Getzler, E .
DUKE MATHEMATICAL JOURNAL, 1999, 96 (01) :175-203
[9]   Mixed Hodge polynomials of character varieties [J].
Hausel, Tamas ;
Rodriguez-Villegas, Fernando .
INVENTIONES MATHEMATICAE, 2008, 174 (03) :555-624
[10]   Equivariant Poincare polynomials and counting points over finite fields [J].
Kisin, M ;
Lehrer, GI .
JOURNAL OF ALGEBRA, 2002, 247 (02) :435-451