Hydrodynamic limit for the Ginzburg-Landau delempty set interface model with a conservation law and Dirichlet boundary conditions

被引:2
作者
Nishikawa, Takao [1 ]
机构
[1] Nihon Univ, Coll Sci & Technol, Dept Math, Chiyoda Ku, 1-8-14 Kanda Surugadai, Tokyo 1018308, Japan
关键词
Ginzburg-Landau model; Effective interfaces; Massless fields;
D O I
10.1016/j.spa.2016.06.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Hydrodynamic limit for the Ginzburg-Landau del empty set interface model with a conservation law was established in Nishikawa (2002) under periodic boundary conditions. This paper studies the same problem on a bounded domain imposing the Dirichlet boundary condition. A nonlinear partial differential equation of fourth order satisfying the boundary conditions is derived as the macroscopic equation. Its solution converges to the Wulff shape derived by Deuschel et al. (2000) as the time t -> infinity. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:228 / 272
页数:45
相关论文
共 10 条
[1]  
[Anonymous], 1998, PARTIAL DIFFERENTIAL
[2]  
Barbu V, 2010, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-4419-5542-5
[3]  
Blowey J. F., 1991, Eur. J. Appl. Math., V2, P233, DOI DOI 10.1017/S095679250000053X
[4]  
Deuschel J.D., 2016, HYDRODYNAMIC L UNPUB
[5]   Large deviations and concentration properties for Δφ interface models [J].
Deuschel, JD ;
Giacomin, G ;
Ioffe, D .
PROBABILITY THEORY AND RELATED FIELDS, 2000, 117 (01) :49-111
[6]   STATIONARY MEASURES OF STOCHASTIC GRADIENT SYSTEMS, INFINITE LATTICE MODELS [J].
FRITZ, J .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 59 (04) :479-490
[7]   Motion by mean curvature from the Ginzburg-Landau del phi interface model [J].
Funaki, T ;
Spohn, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 185 (01) :1-36
[8]  
FUNAKI T., 2005, Lecture Notes in Math., V1869, P103, DOI [10.1007/114295792, DOI 10.1007/11429579_2]
[9]   Hydrodynamic limit for the Ginzburg-Landau Δφ interface model with boundary conditions [J].
Nishikawa, T .
PROBABILITY THEORY AND RELATED FIELDS, 2003, 127 (02) :205-227
[10]  
Nishikawa T., 2002, Journal of Mathematical Sciences, University of Tokyo, V9, P481