Work function and quantum efficiency study of metal oxide thin films on Ag(100)

被引:9
作者
Chang, V [1 ]
Noakes, T. C. Q. [2 ]
Harriso, N. M. [3 ]
机构
[1] Imperial Coll London, Dept Mat, London SW7 2AZ, England
[2] Daresbury Lab, Warrington WA4 4AD, Cheshire, England
[3] Imperial Coll London, Dept Chem, London SW7 2AZ, England
基金
英国科学技术设施理事会; 英国工程与自然科学研究理事会;
关键词
FREE-ELECTRON LASERS; BARIUM OXIDE; SURFACES; AG(001); DESIGN;
D O I
10.1103/PhysRevB.97.155436
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Increasing the quantum efficiency (QE) of metal photocathodes is in the design and development of photocathodes for free-electron laser applications. The growth of metal oxide thin films on certain metal surfaces has previously been shown to reduce the work function (WF). Using a photoemission model B. Camino et al. [Comput. Mater. Sci. 122, 331 (2016)] based on the three-step model combined with density functional theory calculations we predict that the growth of a finite number of MgO(100) or BaO(100) layers on the Ag(100) surface increases significantly the QE compared with the clean Ag(100) surface for a photon energy of 4.7 eV. Different mechanisms for affecting the QE are identified for the different metal oxide thin films. The addition of MgO(100) increases the QE due to the reduction of the WF and the direct excitation of electrons from the Ag surface to the MgO conduction band. For BaO(100) thin films, an additional mechanism is in operation as the oxide film also photoemits at this energy. We also note that a significant increase in the QE for photons with an energy of a few eV above the WF is achieved due to an increase in the inelastic mean-free path of the electrons.
引用
收藏
页数:8
相关论文
共 36 条
[1]   ON THE PHOTOELECRIC EMISSION AND ENERGY STRUCTURE OF BAO [J].
APKER, L ;
TAFT, E ;
DICKEY, J .
PHYSICAL REVIEW, 1951, 84 (03) :508-511
[2]   PHOTOELECTRIC THRESHOLD, WORK FUNCTION, AND SURFACE BARRIER POTENTIAL OF SINGLE-CRYSTAL CUPROUS-OXIDE [J].
ASSIMOS, JA ;
TRIVICH, D .
PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1974, 26 (02) :477-488
[3]   Competition between Polar and Nonpolar Growth of MgO Thin Films on Au(111) [J].
Benedetti, S. ;
Nilius, N. ;
Torelli, P. ;
Renaud, G. ;
Freund, H. -J. ;
Valeri, S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (46) :23043-23049
[4]  
BERGLUND CN, 1964, PHYS REV A-GEN PHYS, V136, P1030
[5]   Photoemission simulation for photocathode design: theory and application to copper and silver surfaces [J].
Camino, B. ;
Noakes, T. C. Q. ;
Surman, M. ;
Seddon, E. A. ;
Harrison, N. M. .
COMPUTATIONAL MATERIALS SCIENCE, 2016, 122 :331-340
[6]   First principles methods using CASTEP [J].
Clark, SJ ;
Segall, MD ;
Pickard, CJ ;
Hasnip, PJ ;
Probert, MJ ;
Refson, K ;
Payne, MC .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (5-6) :567-570
[7]   Cathode R&D for future light sources [J].
Dowell, D. H. ;
Bazarov, I. ;
Dunham, B. ;
Harkay, K. ;
Hernandez-Garcia, C. ;
Legg, R. ;
Padmore, H. ;
Rao, T. ;
Smedley, J. ;
Wan, W. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2010, 622 (03) :685-697
[8]   Work function reduction by BaO: Growth of crystalline barium oxide on Ag(001) and Ag(111) surfaces [J].
Droubay, T. C. ;
Kong, L. ;
Chambers, S. A. ;
Hess, W. P. .
SURFACE SCIENCE, 2015, 632 :201-206
[9]   Metal-Insulator Photocathode Heterojunction for Directed Electron Emission [J].
Droubay, Timothy C. ;
Chambers, Scott A. ;
Joly, Alan G. ;
Hess, Wayne P. ;
Nemeth, Karoly ;
Harkay, Katherine C. ;
Spentzouris, Linda .
PHYSICAL REVIEW LETTERS, 2014, 112 (06)
[10]   Oxide ultra-thin films on metals: new materials for the design of supported metal catalysts [J].
Freund, Hans-Joachim ;
Pacchioni, Gianfranco .
CHEMICAL SOCIETY REVIEWS, 2008, 37 (10) :2224-2242