The effect of coating thickness on the thermal conductivity of EB-PVD PYSZ thermal barrier coatings

被引:81
|
作者
Rätzer-Scheibe, HJ
Schulz, U
Krell, T
机构
[1] DLR, German Aerosp Ctr, Mat Res Inst, D-51170 Cologne, Germany
[2] WIWEB, D-85435 Erding, Germany
来源
SURFACE & COATINGS TECHNOLOGY | 2006年 / 200卷 / 18-19期
关键词
TBC; EB-PVD; thermal conductivity; PYSZ; partially yttria stabilized zirconia; coating thickness;
D O I
10.1016/j.surfcoat.2005.07.109
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The effect of coating thickness on thermal conductivity of electron beam physical vapor deposited (EB-PVD) partially Y2O3 stabilized ZrO2 (PYSZ) thermal barrier coatings (TBCs) was investigated. Two-layer samples, PYSZ coating deposited on nickel-base superalloy IN625 substrate with a 50 mu m NiCoCrAlY bond coat, as well as free-standing PYSZ coatings and quasi-free-standing PYSZ coatings (PYSZ on transparent sapphire) were included in the study. Fracture surface and surface morphology of the coated samples were examined by scanning electron microscopy. Thermal diffusivity measurements for determining thermal conductivity were made from room temperature up to 1150 degrees C using the laser flash technique. The thermal conductivity of EB-PVD PYSZ coatings strongly depends on the coating thickness with lower values for thin TBCs. The columnar microstructure of EB-PVD ceramic coatings characterized by a fine grained inner zone and a coarse grained outer zone causes this thickness effect. The changes in thermal conductivity of EB-PVD PYSZ coatings are explained by a model with different thermal resistors attributed to the two zones. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:5636 / 5644
页数:9
相关论文
共 50 条
  • [31] Adhesion and interface problems of EB-PVD thermal barrier coatings
    Fritscher, K
    Leyens, C
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 1997, 28 (08) : 384 - 390
  • [32] Effect of EB-PVD thermal barrier coatings on fracture characteristics of superalloy substrate
    Zhang, D.-B., 1600, Harbin Institute of Technology (09):
  • [33] Evaluation Method of Thermal Cycling Property of EB-PVD Thermal Barrier Coatings
    Chen Liqiang
    Gong Shengkai
    Xu Huibin
    RARE METAL MATERIALS AND ENGINEERING, 2013, 42 (02) : 340 - 344
  • [34] Evaluation method of thermal cycling property of EB-PVD thermal barrier coatings
    Chen, Liqiang
    Gong, Shengkai
    Xu, Huibin
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2013, 42 (02): : 340 - 344
  • [35] Failure mechanism of EB-PVD thermal barrier coating subjected to thermal cycling
    Li, Mei-Heng
    Zhang, Zhong-Yuan
    Sun, Xiao-Feng
    Gong, Sheng-Kai
    Hu, Wang-Yu
    Guan, Heng-Rong
    Hu, Zhuang-Qi
    Cailiao Gongcheng/Journal of Materials Engineering, 2002, (08):
  • [36] The thermal property and failure behaviors of SmErZrO thermal barrier coatings by EB-PVD
    Shen, Zaoyu
    Xie, Min
    Liu, Guanxi
    Dai, Jianwei
    He, Limin
    Mu, Rende
    MATERIALIA, 2022, 25
  • [37] Thermal cycling behaviour of lanthanum zirconate as EB-PVD thermal barrier coating
    Bobzin, Kirsten
    Lugscheider, Erich
    Bagcivan, Nazlim
    ADVANCED ENGINEERING MATERIALS, 2006, 8 (07) : 653 - 657
  • [38] Oxidation and damage of EB-PVD thermal barrier coatings under thermal cycling
    Chen, XQ
    Newaz, GM
    JOURNAL OF MATERIALS SCIENCE LETTERS, 2001, 20 (01) : 93 - 95
  • [39] Interfacial damage in EB-PVD thermal barrier coatings due to thermal cycling
    Chaudhury, ZA
    Newaz, GM
    Nusier, SQ
    Ahmed, T
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1997, 231 (1-2): : 34 - 41
  • [40] Thermal conductivity and thermal stability of zirconia and hafnia based thermal barrier coatings by EB-PVD for high temperature applications
    Singh, J
    Wolfe, DE
    Miller, R
    Eldridge, J
    Zhu, DM
    ADVANCED MATERIALS FORUM II, 2004, 455-456 : 579 - 586